Featured Research

from universities, journals, and other organizations

Quirky Lyme disease bacteria: Unlike most organisms, they don't need iron, but crave manganese

Date:
March 21, 2013
Source:
Woods Hole Oceanographic Institution
Summary:
Scientists have confirmed that the pathogen that causes Lyme disease -- unlike any other known organism -- can exist without iron, a metal that all other life needs to make proteins and enzymes. Instead of iron, the bacteria substitute manganese to make an essential enzyme, thus eluding immune system defenses that protect the body by starving pathogens of iron.

Saito collaborated with biomedical researchers at Johns Hopkins University, applying his proteomic techniques to explore proteins in a terrestrial organism, the bacteria that cause Lyme Disease. Unlike all other known organisms, Borrelia burgdorferi need manganese (blue dot), rather than iron, to serve as linchpins bonded into key enzymes. The scientists found that to cause disease, Borrelia require unusually high levels of manganese. The findings open new avenues to search for ways to attack the bacteria.
Credit: Illustration by P. John Hart, University of Texas

Scientists have confirmed that the pathogen that causes Lyme Disease -- unlike any other known organism -- can exist without iron, a metal that all other life needs to make proteins and enzymes. Instead of iron, the bacteria substitute manganese to make an essential enzyme, thus eluding immune system defenses that protect the body by starving pathogens of iron.

To cause disease, Borrelia burgdorferi requires unusually high levels of manganese, scientists at Johns Hopkins University (JHU), Woods Hole Oceanographic Institution (WHOI), and the University of Texas reported. Their study, published March 22, 2013, in The Journal of Biological Chemistry, may explain some mysteries about why Lyme Disease is slow-growing and hard to detect and treat. The findings also open the door to search for new therapies to thwart the bacterium by targeting manganese.

"When we become infected with pathogens, from tuberculosis to yeast infections, the body has natural immunological responses," said Valeria Culotta, a molecular biologist at the JHU Bloomberg School of Public Health. The liver produces hepcidin, a hormone that inhibits iron from being absorbed in the gut and also prevents it from getting into the bloodstream. "We become anemic, which is one reason we feel terrible, but it effectively starves pathogens of iron they need to grow and survive," she said.

Borrelia, with no need for iron,has evolved to evade that defense mechanism. In 2000, groundbreaking research on Borrelia's genome by James Posey and Frank Gherardini at the University of Georgia showed that the bacterium has no genes that code to make iron-containing proteins and typically do not accumulate any detectable iron.

Culotta's lab at JHU investigates what she called "metal-trafficking" in organisms­ -- the biochemical mechanisms that cells and pathogens such as Borrelia use to acquire and manipulate metal ions for their biological purposes.

"If Borrelia doesn't use iron, what does it use?" Culotta asked.

To find out, Culotta's lab joined forces with Mak Saito, a marine chemist at WHOI, who had developed techniques to explore how marine life uses metals. Saito was particularly intrigued because of the high incidence of Lyme Disease on Cape Cod, where WHOI is located, and because he specializes in metalloproteins, which contain iron, zinc, cobalt, and other elements often seen in vitamin supplements. The metals serve as linchpins, binding to enzymes. They help determine the enzymes' distinctive three-dimensional shapes and the specific chemical reactions they catalyze.

It's difficult to identify what metals are within proteins because typical analyses break apart proteins, often separating metal from protein. Saito used a liquid chromatography mass spectrometer to distinguish and measure separate individual Borrelia proteins according to their chemical properties and infinitesimal differences in their masses. Then he used an inductively coupled plasma mass spectrometer to detect and measure metals down to parts per trillion. Together, the combined analyses not only measured the amounts of metals and proteins, they showed that the metals are components of the proteins.

"The tools he has are fantastic," Culotta said. "Not too many people have this set of tools to detect metalloproteins."

The experiments revealed that instead of iron, Borrelia uses that element's next-door neighbor on the periodic chart, manganese, in certain Borrelia enzymes. These include an amino peptidase and an important antioxidant enzyme called superoxide dismutase.

Superoxide dismutase protects the pathogens against a second defense mechanism that the body throws against them. The body bombards pathogens with superoxide radicals, highly reactive molecules that cause damage within the pathogens. Superoxide dismutase is like an antioxidant that neutralizes the superoxides so that the pathogens can continue to grow.

The discoveries open new possibilities for therapies, Culotta said. "The only therapy for Lyme Disease right now are antibiotics like penicillin, which are effective if the disease is detected early enough. It works by attacking the bacteria's cell walls. But certain forms of Borrelia, such as the L-form, can be resistant because they are deficient in cell walls."

"So we'd like to find targets inside pathogenic cell that could thwart their growth," she continued. "The best targets are enzymes that the pathogens have, but people do not, so they would kill the pathogens but not harm people." Borrelia's distinctive manganese-containing enzymes such as superoxide dismutase may have such attributes.

In search of new avenues of attack, the groups are planning to expand their collaborative efforts by mapping out all the metal-binding proteins that Borellia uses and investigating biochemical mechanisms that the bacteria use to acquire manganese and directs it into essential enzymes. Knowing details of how that happens offers ways to disrupt the process and deter Lyme Disease.

The authors of the new study are J. Daphne Aguirre, Hillary Clark, Christine Vazquez, Shaina Palmere, and Culotta (JHU Bloomberg School of Public Health); Saito and Matthew McIlvin (WHOI); Denise Grab (JHS School of Medicine); Janakiram Seshu (University of Texas); and P. John Hart (University of Texas Health Science Center).


Story Source:

The above story is based on materials provided by Woods Hole Oceanographic Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. D. Aguirre, H. M. Clark, M. McIlvin, C. Vazquez, S. L. Palmere, D. Grab, J. Seshu, P. J. Hart, M. Saito, V. C. Culotta. A Manganese-Rich Environment Supports Superoxide Dismutase Activity in a Lyme Disease Pathogen, Borrelia burgdorferi. Journal of Biological Chemistry, 2013; DOI: 10.1074/jbc.M112.433540

Cite This Page:

Woods Hole Oceanographic Institution. "Quirky Lyme disease bacteria: Unlike most organisms, they don't need iron, but crave manganese." ScienceDaily. ScienceDaily, 21 March 2013. <www.sciencedaily.com/releases/2013/03/130321205712.htm>.
Woods Hole Oceanographic Institution. (2013, March 21). Quirky Lyme disease bacteria: Unlike most organisms, they don't need iron, but crave manganese. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2013/03/130321205712.htm
Woods Hole Oceanographic Institution. "Quirky Lyme disease bacteria: Unlike most organisms, they don't need iron, but crave manganese." ScienceDaily. www.sciencedaily.com/releases/2013/03/130321205712.htm (accessed October 23, 2014).

Share This



More Health & Medicine News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Working Mother (Oct. 22, 2014) — Is your child ready? Video provided by Working Mother
Powered by NewsLook.com
U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

Newsy (Oct. 22, 2014) — Now that the U.S. is restricting travel from West Africa, some are dropping questions about a travel ban and instead asking about visa bans. Video provided by Newsy
Powered by NewsLook.com
US to Track Everyone Coming from Ebola Nations

US to Track Everyone Coming from Ebola Nations

AP (Oct. 22, 2014) — Stepping up their vigilance against Ebola, federal authorities said Wednesday that everyone traveling into the US from Ebola-stricken nations will be monitored for symptoms for 21 days. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Doctors Help Paralysed Man Walk Again, Patient in Disbelief

Doctors Help Paralysed Man Walk Again, Patient in Disbelief

AFP (Oct. 22, 2014) — Polish doctors describe how they helped a paralysed man walk again, with the patient in disbelief at the return of sensation to his legs. Duration: 1:04 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins