Featured Research

from universities, journals, and other organizations

Manufacturing: Plasma treatments on a roll

Date:
March 27, 2013
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
A revolutionary atmospheric-pressure plasma boosts adhesion of polymer films for roll-to-roll solar-cell production has been developed.

A new ‘diffuse coplanar surface barrier discharge’ (DCSBD) plasma source (pictured) that rapidly cleans flat polymer sheets in open-air conditions holds great promise for roll-to-roll manufacturing.
Credit: © 2013 Mirko Černak, Comenius University

A revolutionary atmospheric-pressure plasma boosts adhesion of polymer films for roll-to-roll solar-cell production.

Mass manufacture of photovoltaic materials is often achieved inexpensively by screen printing organic solar cells onto plastic sheets. The polymer known as poly(ethylene terephthalate), or PET, is a key part of the technology. Well known as the inexpensive plastic used to make soda bottles, PET has garnered increasing use as an optoelectronic substrate because of its strength and flexibility. But printing conductive solar-cell coatings onto PET is a challenge: it has a non-reactive surface and is frequently contaminated with static electric charges, which makes adhesion to other materials difficult.

Linda Wu from the A*STAR Singapore Institute of Manufacturing Technology and co-workers have now devised an innovative plasma treatment to 'activate' PET surfaces for improved bonding during roll-to-roll processing1. The team's experiments with 'diffuse coplanar surface barrier discharge' (DCSBD) technology show that large-area PET sheets can be microscopically abraded and chemically modified to increase surface adhesion nearly instantaneously, thanks to plasma ions generated under open-air conditions.

Plasma treatments can quickly clean the surfaces of PET and other plastics2 without affecting their underlying properties or appearance. Normally, this technology requires clean rooms and vacuum chambers to turn noble gases into polymer-scrubbing plasma ions. The DCSBD technique, on the other hand, operates at atmospheric pressure and generates its plasma from ordinary air molecules. It achieves this through an inventive system of parallel, strip-like electrodes embedded inside an alumina ceramic plate. Applying a high-frequency, high-voltage electric field to these strips produces a thin and very uniform plasma field from ambient gases close to the ceramic plate (see image). The planar arrangement of this device makes it simple to treat only the top of the substrate using DCSBD in roll-to-roll lines.

When the researchers treated a PET substrate with a DCSBD plasma source, they saw immediate changes to the polymer surface: single-second plasma exposure times were sufficient to transform it from a water-repellent to a water-attractive surface. These modifications occurred uniformly over the entire PET substrate and provided improved adhesion power that lasted for more than 300 hours. X-ray and atomic force microscopy revealed that the short plasma bursts increased the proportion of surface polar groups and significantly enhanced microscale roughness.

Wu notes that the DCSBD technology is safe to touch, easy to operate, and can be deployed in humid and dusty industrial environments. The team is currently investigating if the high power densities present in these atmospheric plasmas can be exploited for future nanomaterial deposition applications.

The A*STAR-affiliated researchers contributing to this research are from the Singapore Institute of Manufacturing Technology


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal References:

  1. Tomáš Homola, Jindřich Matoušek, Beáta Hergelová, Martin Kormunda, Linda Y.L. Wu, Mirko Černák. Activation of poly(ethylene terephthalate) surfaces by atmospheric pressure plasma. Polymer Degradation and Stability, 2012; 97 (11): 2249 DOI: 10.1016/j.polymdegradstab.2012.08.001
  2. Tomáš Homola, Jindřich Matoušek, Beáta Hergelová, Martin Kormunda, Linda Y.L. Wu, Mirko Černák. Activation of poly(methyl methacrylate) surfaces by atmospheric pressure plasma. Polymer Degradation and Stability, 2012; 97 (6): 886 DOI: 10.1016/j.polymdegradstab.2012.03.029

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Manufacturing: Plasma treatments on a roll." ScienceDaily. ScienceDaily, 27 March 2013. <www.sciencedaily.com/releases/2013/03/130327162408.htm>.
The Agency for Science, Technology and Research (A*STAR). (2013, March 27). Manufacturing: Plasma treatments on a roll. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2013/03/130327162408.htm
The Agency for Science, Technology and Research (A*STAR). "Manufacturing: Plasma treatments on a roll." ScienceDaily. www.sciencedaily.com/releases/2013/03/130327162408.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) — Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) — Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) — Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) — Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins