Featured Research

from universities, journals, and other organizations

The equine 'Adam' lived fairly recently: Close relationships among modern stallions

Date:
April 4, 2013
Source:
Veterinärmedizinische Universität Wien
Summary:
The analysis of DNA inherited from a single parent has provided valuable insights into the history of human and animal populations. However, until recently we had insufficient information to be able to investigate the paternal lines of the domestic horse. This gap has now been filled with new information on the genetic variability in the horse Y chromosome. Researchers have shown how various breeds of the modern horse are interrelated.

Pedigree of Darley Arabians progeny depicting the origin of HT3 from HT2. Breeds of analysed males are listed on the bottom and the haplotypes of their ancestors are reconstructed (HT2-yellow, HT3-red, unknown-grey). Selected famous stallions are shown by name; dotted lines connect relatives where at least one ancestor is omitted. No descendants from “Pot8os” and “Waxy” were available apart from “Whalebone, 1807”. The mutation leading to HT3 must have occurred either in the germline of stallion “Eclipse” [54] or in his son “Pot8os” or in his grandson “Waxy” and rose to very high frequency in the English Thoroughbred and many sport horse breeds through the progeny of the stallion “Whalebone”.
Credit: Barbara Wallner et al. Identification of Genetic Variation on the Horse Y Chromosome and the Tracing of Male Founder Lineages in Modern Breeds. PLoS ONE, 2013; 8 (4): e60015 DOI: 10.1371/journal.pone.0060015

The analysis of DNA inherited from a single parent has provided valuable insights into the history of human and animal populations. However, until recently we had insufficient information to be able to investigate the paternal lines of the domestic horse. This gap has been filled by Barbara Wallner and colleagues at the University of Veterinary Medicine, Vienna, who present information on the genetic variability in the horse Y chromosome and show how various breeds of the modern horse are interrelated.

The results have just been published in the online journal PLOS ONE.

In mammals, an individual's sex is determined by the chromosomes it inherits from its parents. Two X chromosomes lead to a female, whereas one X and one Y lead to a male. Y chromosomes are only passed from fathers to sons, so each Y chromosome represents the male genealogy of the animal in question. In contrast, mitochondria are passed on by mothers to all their offspring. This means that an analysis of the genetic material or DNA of mitochondria can give information on the female ancestry. For the modern horse, it is well known that mitochondrial DNA is extremely diverse and this has been interpreted to mean that many ancestral female horses have passed their DNA on to modern horse breeds. Until recently, though, essentially no sequence diversity had been detected on the Y chromosome of the domestic horse. Not only does the lack of sequence markers on the Y chromosome make it impossible to trace male lineages with confidence, it also represents a scientific paradox. How can a species with so many female lines have so few male lines? The issue has now been addressed by Barbara Wallner and colleagues at the Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna (Vetmeduni Vienna).

Wallner initially selected seventeen horses from a range of European breeds. She pooled their DNAs and used modern sequencing technology to examine the level of diversity on a 200 kb portion of the Y chromosome she had previously sequenced. The Y chromosomes were found to be highly similar: only five positions turned out to be variable. As Wallner says, "the results confirmed what we had previously suspected: that the Y chromosomes of modern breeds of horse show far less variability than those of other domestic animals."

The five variable positions, or polymorphisms, were nevertheless sufficient to enable the researchers to derive a type of "family tree" for the various breeds of modern horse they investigated. An examination of over 600 stallions from 58 (largely European) breeds showed that the animals could be grouped into six basic lines or haplotypes. The ancestral haplotype is distributed across almost all breeds and geographical regions. A second haplotype also occurs at high frequencies across a broad range of breeds, although not in northern European breeds or in horses from the Iberian Peninsula. A third haplotype is present in almost all English Thoroughbreds and in many warm-blooded breeds. The final three haplotypes are only found in local northern European breeds: one in Icelandic horses, one in Norwegian Fjord horses and one in Shetland ponies.

The pedigree of horses is very tightly controlled, with studbooks in many cases going as far back as the 18th century. Combining the results of the genetic analysis with pedigree data enabled the scientists to trace the paternal roots of many of the current male lines. Wallner feels that, "the results were intriguing, for example in the way the distribution of one haplotype reflects the widespread movement of stallions from the Middle East to Central and Western Europe in the past 200 years. Another haplotype results from a mutation that occurred in the famous English Thoroughbred stallion 'Eclipse' or in his son or grandson. It is amazing to see how much influence this line has had on modern sport horses: almost all English Thoroughbreds and nearly half the modern sport horse breeds carry the Eclipse haplotype."

The Vetmeduni Vienna scientists have confirmed the low diversity of the horse Y chromosome, which contrasts sharply with range of mitochondrial DNA haplotypes observed in modern horses. The difference is presumably due to the strong variation in male reproductive success. Wild horses have a polygynous breeding pattern, while the intensive breeding practices in domestic horses mean that single stallions can effectively pass on their DNA to entire generations. The senior author on the paper, Gottfried Brem, comments that, "most modern breeds were established in the last two centuries, during which time the horse has undergone a transition from working and military use towards leisure and sports. This has largely been achieved through the use in breeding of a few selected males. The restricted genetic diversity of the modern horse Y chromosome is a reflection of what has survived the species' dynamic history."


Story Source:

The above story is based on materials provided by Veterinärmedizinische Universität Wien. Note: Materials may be edited for content and length.


Journal Reference:

  1. Barbara Wallner, Claus Vogl, Priyank Shukla, Joerg P. Burgstaller, Thomas Druml, Gottfried Brem. Identification of Genetic Variation on the Horse Y Chromosome and the Tracing of Male Founder Lineages in Modern Breeds. PLoS ONE, 2013; 8 (4): e60015 DOI: 10.1371/journal.pone.0060015

Cite This Page:

Veterinärmedizinische Universität Wien. "The equine 'Adam' lived fairly recently: Close relationships among modern stallions." ScienceDaily. ScienceDaily, 4 April 2013. <www.sciencedaily.com/releases/2013/04/130404072920.htm>.
Veterinärmedizinische Universität Wien. (2013, April 4). The equine 'Adam' lived fairly recently: Close relationships among modern stallions. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2013/04/130404072920.htm
Veterinärmedizinische Universität Wien. "The equine 'Adam' lived fairly recently: Close relationships among modern stallions." ScienceDaily. www.sciencedaily.com/releases/2013/04/130404072920.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) — A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) — A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
What's To Blame For Worst Ebola Outbreak In History?

What's To Blame For Worst Ebola Outbreak In History?

Newsy (July 27, 2014) — A U.S. doctor has tested positive for the deadly Ebola virus, as the worst-ever outbreak continues to grow. Video provided by Newsy
Powered by NewsLook.com
The New York Times Backs Pot Legalization

The New York Times Backs Pot Legalization

Newsy (July 27, 2014) — The New York Times has officially endorsed the legalization of marijuana, but why now, and to what end? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins