Featured Research

from universities, journals, and other organizations

New measurement of crocodilian nerves could help scientists understand ancient animals

Date:
April 4, 2013
Source:
University of Missouri-Columbia
Summary:
A new study has measured the nerves responsible for the super-sensitive skin on a crocodile's face, which will help biologists understand how today's animals, as well as dinosaurs and crocodiles that lived millions of years ago, interact with the environment around them.

Crocodilian facial nerves are much more sensitive than humans. This allows the crocodile to detect minute disruptions in water as they hunt for prey or search for a mate.
Credit: University of Missouri

Crocodilians have nerves on their faces that are so sensitive, they can detect a change in a pond when a single drop hits the water surface several feet away. Alligators and crocodiles use these "invisible whiskers" to detect prey when hunting. Now, a new study from the University of Missouri has measured the nerves responsible for this function, which will help biologists understand how today's animals, as well as dinosaurs and crocodiles that lived millions of years ago, interact with the environment around them.

"The trigeminal nerve is the nerve responsible for detection of sensations of the face," said Casey Holliday, assistant professor of anatomy in the MU School of Medicine. "While we've known about these sensitive nerves in crocodiles, we've never measured the size of the nerve bundle, or ganglion, in their skulls, until now. When compared to humans, this trigeminal nerve in crocodiles is huge."

The key to this measurement is a specific hole in the skull. The trigeminal nerve is rooted inside the skull, but must travel through a large hole before it branches out to reach the crocodile's skin on its face. By examining how the skull size, brain size and ganglion size relate to each other, scientists can estimate how sensitive the face is. Eventually, Holliday hopes to measure this nerve in other ancient and contemporary species to learn more about animal behavior.

"Currently, we rely on alligators, crocodiles and birds to provide us with information about how ancient reptiles, such as pre-historic crocodiles and dinosaurs, functioned," said Holliday, who co-authored the study with doctoral student Ian George. "However, the first thing we have to do is to understand how the living animals function."

When comparing the size of the hole for the trigeminal nerve found in alligators to that of certain dinosaurs, George says that the hole in the much-larger dinosaur skull is very similar in size or even smaller, which could give scientists more information about how well dinosaurs could detect small sensations on the face. From there, the scientists can start to trace the evolution of this nerve and the mechanism used by crocodiles.

"Some species of ancient crocodiles lived on land and they probably wouldn't have a use for a sensitive face that can detect disturbances in the water," George said. "So our next step is to trace back and determine when the nerve got bigger and see how that might have paralleled the animals' ecology."

Holliday says that this information will aid future research, including when his team will examine skulls of ancient crocodiles. Understanding this nerve and its functions could also lead to better understanding of the anatomical basis for behavior in many living animals, including fish, electric eels, platypi and humans.

"The same way that we would look at the size of the visual cortex in the brain to understand how well an animal might see, we can now look at the trigeminal nerve in animals to determine how sensitive their skin on their faces is," Holliday said.


Story Source:

The above story is based on materials provided by University of Missouri-Columbia. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ian D. George, Casey M. Holliday. Trigeminal Nerve Morphology in Alligator mississippiensis and Its Significance for Crocodyliform Facial Sensation and Evolution. The Anatomical Record, 13 FEB 2013 DOI: 10.1002/ar.22666

Cite This Page:

University of Missouri-Columbia. "New measurement of crocodilian nerves could help scientists understand ancient animals." ScienceDaily. ScienceDaily, 4 April 2013. <www.sciencedaily.com/releases/2013/04/130404152623.htm>.
University of Missouri-Columbia. (2013, April 4). New measurement of crocodilian nerves could help scientists understand ancient animals. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2013/04/130404152623.htm
University of Missouri-Columbia. "New measurement of crocodilian nerves could help scientists understand ancient animals." ScienceDaily. www.sciencedaily.com/releases/2013/04/130404152623.htm (accessed August 20, 2014).

Share This




More Plants & Animals News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Unsustainable Elephant Poaching Killed 100K In 3 Years

Unsustainable Elephant Poaching Killed 100K In 3 Years

Newsy (Aug. 20, 2014) — Poachers have killed 100,000 elephants between 2010 and 2012, as the booming ivory trade takes its toll on the animals in Africa. Video provided by Newsy
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins