Science News
from research organizations

Why going green is good chemistry

Date:
April 8, 2013
Source:
University of Cincinnati
Summary:
Shaken, not stirred, is the essence of new research that's showing promise in creating the chemical reactions necessary for industries such as pharmaceutical companies, but eliminating the resulting waste from traditional methods.
Share:
       
FULL STORY

Shaken, not stirred, is the essence of new research that's showing promise in creating the chemical reactions necessary for industries such as pharmaceutical companies, but eliminating the resulting waste from traditional methods.
Credit: Image courtesy of University of Cincinnati

Shaken, not stirred, is the essence of new research that's showing promise in creating the chemical reactions necessary for industries such as pharmaceutical companies, but eliminating the resulting waste from traditional methods.

James Mack, a University of Cincinnati associate professor of chemistry, will present this research into greener chemistry on April 9, at the annual meeting of the American Chemical Society in New Orleans.

Instead of using solutions to create chemical reactions needed to manufacture products such as detergents, plastics and pharmaceuticals, Mack is using a physical catalyst -- high-speed ball-milling -- to force chemicals to come together to create these reactions. The mechanochemistry not only eliminates waste, but also is showing more success than liquids at forcing chemical reactions.

Traditional methods -- dating back thousands of years -- involve using solutions to speed up chemical reactions that are used to make products that we use every day. However, the leftover waste or solvents can often be a volatile compound, explains Mack.

Disposal and recycling is also becoming a growing and more costly challenge for companies as they follow increasing federal regulations to protect the environment. "The solvents comprise the large majority of chemicals that are handled, but the solvent doesn't do anything but serve as a mixing vehicle. For example, for every gram of pharmaceutical drug that is generated, 15 to 20 kilograms of solvent waste is generated in that process," Mack says.

"Mechanochemistry can develop new reactions that we haven't seen before, saving on waste and developing new science," Mack says.

Mack also will report on how he has used a metal reactor vial to create chemical reactions, allowing recovery of the catalyst used to make the reaction, which usually can't be achieved by using solutions. He also is exploring efforts at using natural chiral agents -- agents that are non-superimposable, mirror images of each other -- to successfully mix chemicals and eliminate waste such as oil.


Story Source:

The above post is reprinted from materials provided by University of Cincinnati. The original item was written by Dawn Fuller. Note: Materials may be edited for content and length.


Cite This Page:

University of Cincinnati. "Why going green is good chemistry." ScienceDaily. ScienceDaily, 8 April 2013. <www.sciencedaily.com/releases/2013/04/130408123302.htm>.
University of Cincinnati. (2013, April 8). Why going green is good chemistry. ScienceDaily. Retrieved August 30, 2015 from www.sciencedaily.com/releases/2013/04/130408123302.htm
University of Cincinnati. "Why going green is good chemistry." ScienceDaily. www.sciencedaily.com/releases/2013/04/130408123302.htm (accessed August 30, 2015).

Share This Page: