Featured Research

from universities, journals, and other organizations

Plant protein shape puzzle solved by molecular 3-D model

Date:
April 15, 2013
Source:
North Carolina State University
Summary:
Researchers believe they have solved a puzzle that has long vexed science. The researchers provide the first three-dimensional model of an enzyme that links a simple sugar, glucose, into long-chain cellulose, the basic building block within plant cell walls that gives plants structure. Cellulose is nature's most abundant renewable biomaterial and an important resource for production of biofuels that represent alternatives to fossil fuels.

The 3-D molecular model of a plant cellulose synthase no longer remains elusive.
Credit: Image courtesy of North Carolina State University

Researchers from North Carolina State University believe they have solved a puzzle that has vexed science since plants first appeared on Earth.

In a groundbreaking paper published online this week in Proceedings of the National Academy of Sciences, the researchers provide the first three-dimensional model of an enzyme that links a simple sugar, glucose, into long-chain cellulose, the basic building block within plant cell walls that gives plants structure. Cellulose is nature's most abundant renewable biomaterial and an important resource for production of biofuels that represent alternatives to fossil fuels.

New understanding of the structure of the modeled plant enzyme, a cellulose synthase, may allow researchers to genetically engineer plants and trees for better cotton fibers or stronger wood, for example. From a materials engineering perspective, the findings can also be used to create beneficial nanocrystals with desired properties and functions.

"This structural model gives us insight into how cellulose synthesis works," said Dr. Yaroslava Yingling, an NC State materials science and engineering professor who is the corresponding author on the study. "In the long term, it could result in new genetically modified plants that can be tweaked to induce specific engineered properties of cellulose."

The study examined the structure of one cellulose synthase found in cotton fibers. The researchers compared their model with the structure of a similar enzyme in bacteria and found that the proteins were similarly folded in key regions required for cellulose synthesis. In the lab rat of the plant family -- Arabidopsis thaliana, or mustard weed -- the researchers identified potential causes for defective cellulose synthesis in mutant plants by making analogies to the modeled cotton cellulose synthase.

"Without the enzyme structure, you can't make strategically designed, rational projections about how to make beneficial changes to the proteins -- but now you can," said Dr. Candace Haigler, an NC State crop scientist and plant biologist who co-authored the study. "In the future we could make cellulose easier to break down into biofuels while ensuring that the plants themselves are able to grow well."

Latsavongsakda Sethaphong, an NC State doctoral student, co-authored the study, as did researchers from Penn State University, the University of Virginia, the University of Ontario Institute of Technology and the University of Kentucky. The computational research was supported as part of The Center for LignoCellulose Structure and Formation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Latsavongsakda Sethaphong, Candace H. Haigler, Yaroslava G. Yingling, James D. Kubicki, Jochen Zimmer, Dario Bonetta, Seth DeBolt. Tertiary Model of a Plant Cellulose Synthase. PNAS, April 15, 2013

Cite This Page:

North Carolina State University. "Plant protein shape puzzle solved by molecular 3-D model." ScienceDaily. ScienceDaily, 15 April 2013. <www.sciencedaily.com/releases/2013/04/130415182505.htm>.
North Carolina State University. (2013, April 15). Plant protein shape puzzle solved by molecular 3-D model. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2013/04/130415182505.htm
North Carolina State University. "Plant protein shape puzzle solved by molecular 3-D model." ScienceDaily. www.sciencedaily.com/releases/2013/04/130415182505.htm (accessed July 30, 2014).

Share This




More Plants & Animals News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Otters Enjoy Water Slides at Japan Zoo

Raw: Otters Enjoy Water Slides at Japan Zoo

AP (July 30, 2014) River otters were hitting the water slides to beat the summer heatwave on Wednesday at Ichikawa City's Zoological and Botanical Garden. (July 30) Video provided by AP
Powered by NewsLook.com
In Virginia, the Rise of a New Space Coast

In Virginia, the Rise of a New Space Coast

AP (July 30, 2014) Every summer, tourists make the pilgrimage to Chincoteague Island, Va. to see wild ponies cross the Assateague Channel. But, it's the rockets sending to supplies to the International Space Station that are making this a year-round destination. (July 30) Video provided by AP
Powered by NewsLook.com
Rodents Rampant in Gardens Around Louvre

Rodents Rampant in Gardens Around Louvre

AP (July 29, 2014) Food scraps and other items left on the grounds by picnickers brings unwelcome visitors to the grounds of the world famous and popular Louvre Museum in Paris. (July 29) Video provided by AP
Powered by NewsLook.com
Jane Goodall Warns Great Apes Face Extinction

Jane Goodall Warns Great Apes Face Extinction

AFP (July 29, 2014) The world's great apes face extinction within decades, renowned chimpanzee expert Jane Goodall warned Tuesday in a call to arms to ensure man's closest relatives are not wiped out. Duration: 00:58 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins