Featured Research

from universities, journals, and other organizations

Smoke signals: How burning plants tell seeds to rise from the ashes

Date:
April 29, 2013
Source:
Salk Institute for Biological Studies
Summary:
In the spring following a forest fire, trees that survived the blaze explode in new growth and plants sprout in abundance from the scorched earth. For centuries, it was a mystery how seeds, some long dormant in the soil, knew to push through the ashes to regenerate the burned forest.

From left: Joanne Chory, Yongxia Guo, Joseph Noel, Zuyu Zheng and James J. La Clair
Credit: Courtesy of the Salk Institute for Biological Studies

In the spring following a forest fire, trees that survived the blaze explode in new growth and plants sprout in abundance from the scorched earth. For centuries, it was a mystery how seeds, some long dormant in the soil, knew to push through the ashes to regenerate the burned forest.

In the April 23 early online edition of the Proceedings of the National Academy of Sciences (PNAS), scientists at the Salk Institute and the University of California, San Diego, report the results of a study that answers this fundamental "circle of life" question in plant ecology. In addition to explaining how fires lead to regeneration of forests and grasslands, their findings may aid in the development of plant varieties that help maintain and restore ecosystems that support all human societies.

"This is a very important and fundamental process of ecosystem renewal around the planet that we really didn't understand," says co-senior investigator Joseph P. Noel, professor and director of Salk's Jack H. Skirball Center for Chemical Biology and Proteomics. "Now we know the molecular triggers for how it occurs."

Noel's co-senior investigator on the project, Joanne Chory, professor and director of Salk's Plant Molecular and Cellular Biology Laboratory, says the team found the molecular "wake-up call" for burned forests. "What we discovered," she says, "is how a dying plant generates a chemical message for the next generation, telling dormant seeds it's time to sprout."

While controlled burns are common today, they weren't 50 years ago. The U.S. park service actively suppressed forest fires until they realized that the practice left the soil of mature forests lacking important minerals and chemicals. This created an intensely competitive environment that was ultimately detrimental to the entire forest ecosystem.

"When Yellowstone National Park was allowed to burn in 1988, many people felt that it would never be restored to its former beauty," says James J. La Clair, a researcher from the Department of Chemistry and Biochemistry at the University of California who worked on the project. "But by the following spring, when the rains arrived, there was a burst of flowering plants amid the nutrient-rich ash and charred ground."

In previous studies, scientists had discovered that special chemicals known as karrikins are created as trees and shrubs burn during a forest fire and remain in the soil after the fire, ensuring the forest will regenerate.

The Salk scientists' new study sought to uncover exactly how karrikins stimulate new plant growth. First, the researchers determined the structure of a plant protein know as KAI2, which binds to karrikin in dormant seeds. Then, comparing the karrikin-bound KAI2 protein to the structure of an unbound KAI2 protein allowed the researchers to speculate how KAI2 allows a seed to perceive karrikin in its environment.

The chemical structures the team solved revealed all the molecular contacts between karrikin and KAI2, according to Salk research associate Yongxia Guo, a structural enzymologist and one of the study's lead investigators. "But, more than that," Gou says, "we also now know that when karrikin binds to the KAI2 protein it causes a change in its shape."

The studies' other lead investigator, Salk research associate and plant geneticist Zuyu Zheng, says this karrikin-induced shape change may send a new signal to other proteins in the seeds. "These other protein players," he says, "together with karrikin and KAI2, generate the signal causing seed germination at the right place and time after a wildfire."

Guo and Zheng, a married couple working as postdoctoral researchers in the Noel and Chory labs, respectively, came up with the idea for the study while talking over dinner. La Clair then joined the study, contributing his chemistry expertise. While the new findings were made in Arabidopsis, a model organism that many plant researchers study, the scientists say the same karrikin-KAI2 regeneration strategy is undoubtedly found in many plant species.

"In plants, one member of this family of enzymes has been recruited somehow through natural selection to bind to this molecule in smoke and ash and generate this signal," says Noel, holder of Salk's Arthur and Julie Woodrow Chair and a Howard Hughes Medical Institute investigator. "KAI2 likely evolved when plant ecosystems started to flourish on the terrestrial earth and fire became a very important part of ecosystems to free up nutrients locked up in dying and dead plants."

More research is needed to understand exactly how the change in shape of the KAI2 protein activates a genetic pathway that regulates germination, says Chory, the Howard H. and Maryam R. Newman Chair in Plant Biology and a Howard Hughes Medical Institute investigator. "But this finding is an absolutely critical step in understanding this genetic program and how plant ecosystems, forests and grasslands renew themselves."

The work was supported by the National Institutes of Health grants 5R01GM52413 and GM094428, National Science Foundation awards EEC-0813570 and MCB-0645794 and the Howard Hughes Medical Institute.


Story Source:

The above story is based on materials provided by Salk Institute for Biological Studies. Note: Materials may be edited for content and length.


Journal Reference:

  1. Y. Guo, Z. Zheng, J. J. La Clair, J. Chory, J. P. Noel. Smoke-derived karrikin perception by the /-hydrolase KAI2 from Arabidopsis. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1306265110

Cite This Page:

Salk Institute for Biological Studies. "Smoke signals: How burning plants tell seeds to rise from the ashes." ScienceDaily. ScienceDaily, 29 April 2013. <www.sciencedaily.com/releases/2013/04/130429175908.htm>.
Salk Institute for Biological Studies. (2013, April 29). Smoke signals: How burning plants tell seeds to rise from the ashes. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2013/04/130429175908.htm
Salk Institute for Biological Studies. "Smoke signals: How burning plants tell seeds to rise from the ashes." ScienceDaily. www.sciencedaily.com/releases/2013/04/130429175908.htm (accessed July 29, 2014).

Share This




More Plants & Animals News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins