Featured Research

from universities, journals, and other organizations

Seahorse's armor gives engineers insight into robotics designs

Date:
May 1, 2013
Source:
University of California - San Diego
Summary:
The tail of a seahorse can be compressed to about half its size before permanent damage occurs, engineers have found. The tail's flexibility is due to its structure, made up of bony, armored plates, which slide past each other. Researchers are hoping to use a similar structure to create a flexible robotic arm, which could be used in medical devices, underwater exploration and unmanned bomb detection and detonation.

Sea horses get their exceptional flexibility from the structure of their bony plates, which form its armor. The plates slide past each other. Here the seahorse’s skeleton, as well as the bony plates, are shown though a micro CT-scan of the animal.
Credit: Image courtesy of University of California - San Diego

The tail of a seahorse can be compressed to about half its size before permanent damage occurs, engineers at the University of California, San Diego, have found. The tail's exceptional flexibility is due to its structure, made up of bony, armored plates, which slide past each other. Researchers are hoping to use a similar structure to create a flexible robotic arm equipped with muscles made out of polymer, which could be used in medical devices, underwater exploration and unmanned bomb detection and detonation. UC San Diego engineers, led by materials science professors Joanna McKittrick and Marc Meyers, detailed their findings in the March 2013 issue of the journal Acta Biomaterialia.

"The study of natural materials can lead to the creation of new and unique materials and structures inspired by nature that are stronger, tougher, lighter and more flexible," said McKittrick, a professor of materials science at the Jacobs School of Engineering at UC San Diego.

McKittrick and Meyers had sought bioinsipiration by examining the armor of many other animals, including armadillo, alligators and the scales of various fish. This time, they were specifically looking for an animal that was flexible enough to develop a design for a robotic arm.

"The tail is the seahorse's lifeline," because it allows the animal to anchor itself to corals or seaweed and hide from predators, said Michael Porter, a Ph.D. student in materials science at the Jacobs School of Engineering. "But no one has looked at the seahorse's tail and bones as a source of armor."

Most of the seahorse's predators, including sea turtles, crabs and birds, capture the animals by crushing them. Engineers wanted to see if the plates in the tail act as an armor. Researchers took segments from seahorses' tails and compressed them from different angles. They found that the tail could be compressed by nearly 50 percent of its original width before permanent damage occurred. That's because the connective tissue between the tail's bony plates and the tail muscles bore most of the load from the displacement. Even when the tail was compressed by as much as 60 percent, the seahorse's spinal column was protected from permanent damage.

McKittrick and Meyers' research group uses a unique technique that applies a series of chemicals to materials to strip them of either their protein components or their mineral components. That allows them to better study materials' structures and properties. After treating the bony plates in the seahorse's tail with the chemicals, they discovered that the percentage of minerals in the plates was relatively low -- 40 percent, compared to 65 percent in cow bone. The plates also contained 27 percent organic compounds -- mostly proteins -- and 33 percent water. The hardness of the plates varied. The ridges were hardest, likely for impact protection -- about 40 percent harder than the plate's grooves, which are porous and absorb energy from impacts.

The seahorse's tail is typically made up of 36 square-like segments, each composed of four L-shaped corner plates that progressively decrease in size along the length of the tail. Plates are free to glide or pivot. Gliding joints allow the bony plates to glide past one another. Pivoting joints are similar to a ball-and-socket joint, with three degrees of rotational freedom. The plates are connected to the vertebrae by thick collagen layers of connective tissue. The joints between plates and vertebrae are extremely flexible with nearly six degrees of freedom.

"Everything in biology comes down to structures," Porter said.

The next step is to use 3D printing to create artificial bony plates, which would then be equipped with polymers that would act as muscles. The final goal is to build a robotic arm that would be a unique hybrid between hard and soft robotic devices. A flexible, yet robust robotic gripper could be used for medical devices, underwater exploration and unmanned bomb detection and detonation. The protected, flexible arm would be able to grasp a variety of objects of different shapes and sizes.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Journal Reference:

  1. Michael M. Porter, Ekaterina Novitskaya, Ana Bertha Castro-Ceseρa, Marc A. Meyers, Joanna McKittrick. Highly deformable bones: Unusual deformation mechanisms of seahorse armor. Acta Biomaterialia, 2013; DOI: 10.1016/j.actbio.2013.02.045

Cite This Page:

University of California - San Diego. "Seahorse's armor gives engineers insight into robotics designs." ScienceDaily. ScienceDaily, 1 May 2013. <www.sciencedaily.com/releases/2013/05/130501132123.htm>.
University of California - San Diego. (2013, May 1). Seahorse's armor gives engineers insight into robotics designs. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2013/05/130501132123.htm
University of California - San Diego. "Seahorse's armor gives engineers insight into robotics designs." ScienceDaily. www.sciencedaily.com/releases/2013/05/130501132123.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) — After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) — It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) — German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) — The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins