Featured Research

from universities, journals, and other organizations

Mining the botulinum genome

Date:
May 14, 2013
Source:
Norwich BioScience Institutes
Summary:
Scientists have been mining the genome of C. botulinum to uncover new information about the toxin genes that produce the potent toxin behind botulism.

Comparison of two closely related C. botulinum strains. Genes shared by both genomes are in green. The newly introduced DNA is shown by the gap in the red bars which connect the two DNA species. Genes in red are neurotoxin cluster associated including two extra ones, numbered 33 and 35, which are remnants of previous neurotoxin gene clusters that have been disrupted during the evolution of the current cluster. Gene number 12 (in black) is the new copy of the DNA replication gene.

The toxin that causes botulism is the most potent that we know of. Eating an amount of toxin just 1000th the weight of a grain of salt can be fatal, which is why so much effort has been put into keeping Clostridium botulinum, which produces the toxin, out of our food.

Related Articles


The Institute of Food Research on the Norwich Research Park has been part of that effort through studying the bacteria and the way they survive, multiply and cause such harm. In new research, IFR scientists have been mining the genome of C. botulinum to uncover new information about the toxin genes.

There are seven distinct, but similar, types of botulinum neurotoxin, produced by different strains of C. botulinum bacteria. Different sub-types of the neurotoxin appear to be associated with different strains of the bacteria. Genetic analysis of these genes will give us information about how they evolved.

Dr Andy Carter, working in Professor Mike Peck's research group, used data generated from sequencing efforts at The Genome Analysis Centre, on the Norwich Research Park. Andy compared the genome sequence of five different C. botulinum strains, all from the same group and all producing the same sub-type of neurotoxin.

An initial finding was that the five strains were remarkably similar in the area of the genome containing the neurotoxin gene. This suggests that the bacteria picked up the gene cluster in a single event, sometime in the past. Bacteria commonly acquire genes, or gene clusters, from other bacteria through this horizontal gene transfer. It is a way that bacteria have evolved to share 'weapons', such as antibiotic activity or the ability to produce toxins. To find out more about how C. botulinum acquired its own deadly weapon, Andy delved deeper into the genome sequence.

Like fossils of long lost organisms, Andy found, in the same region of the genome, evidence of two other genes for producing two of the other types of neurotoxin. Although these gene fragments are completely non-functional, finding them in the same place in the genome as the functional neurotoxin gene cluster is significant as it suggests that this region of the genome could be a 'hotspot' for gene transfer.

Looking to either side of the neurotoxin gene cluster uncovered more evidence supporting the hotspot idea. When the gene cluster inserted into the C. botulinum genome, it cut in two another gene. This gene is essential for the bacteria to replicate its DNA, so why does destroying it not prove fatal? C. botulinum was unaffected by this because contained in the segment of imported DNA was another version of the chopped-up gene.

Perhaps this is pointing us to the way C. botulinum first picks up its lethal weapon. This should help us prepare against the emergence of new strains, and may even one day help us disarm this deadly foe.

The research was funded by the Biotechnology and Biological Sciences Research Council and published in the journal Genome Biology and Evolution Advance.


Story Source:

The above story is based on materials provided by Norwich BioScience Institutes. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. T. Carter, S. C. Stringer, M. D. Webb, M. W. Peck. The type F6 neurotoxin gene cluster locus of Group II Clostridium botulinum has evolved by successive disruption of two different ancestral precursors. Genome Biology and Evolution, 2013; DOI: 10.1093/gbe/evt068

Cite This Page:

Norwich BioScience Institutes. "Mining the botulinum genome." ScienceDaily. ScienceDaily, 14 May 2013. <www.sciencedaily.com/releases/2013/05/130514122754.htm>.
Norwich BioScience Institutes. (2013, May 14). Mining the botulinum genome. ScienceDaily. Retrieved March 5, 2015 from www.sciencedaily.com/releases/2013/05/130514122754.htm
Norwich BioScience Institutes. "Mining the botulinum genome." ScienceDaily. www.sciencedaily.com/releases/2013/05/130514122754.htm (accessed March 5, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, March 5, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Praying Mantis Looks Long Before It Leaps

Praying Mantis Looks Long Before It Leaps

Reuters - Innovations Video Online (Mar. 5, 2015) Slowed-down footage of the leaps of praying mantises show the insect&apos;s extraordinary precision, say researchers. Video provided by Reuters
Powered by NewsLook.com
Octopus Grabs Camera and Turns It Around On Photographer

Octopus Grabs Camera and Turns It Around On Photographer

Buzz60 (Mar. 5, 2015) A photographer got the shot of a lifetime, or rather an octopus did, when it grabbed the camera and turned it around to take an amazing picture of the photographer. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com
Ringling Bros. Eliminating Elephant Acts

Ringling Bros. Eliminating Elephant Acts

AP (Mar. 5, 2015) The Ringling Bros. and Barnum & Bailey Circus is ending its iconic elephant acts. The circus&apos; parent company, Feld Entertainment, told the AP exclusively that the acts will be phased out by 2018 over growing public concern about the animals. (March 5) Video provided by AP
Powered by NewsLook.com
Raw: Tourists Visit Rare Grey Whales in Mexico

Raw: Tourists Visit Rare Grey Whales in Mexico

AP (Mar. 4, 2015) Once nearly extinct, grey whales now migrate in their thousands to Mexico&apos;s Vizcaino reserve in Baja California, in search of warmer waters to mate and give birth. Tourists flock to the reserve to see the whales, measuring up to 49 feet long. (March 4) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins