Featured Research

from universities, journals, and other organizations

Biochemistry: Unspooling DNA from nucleosomal disks

Date:
May 23, 2013
Source:
Ludwig-Maximilians-Universitaet Muenchen (LMU)
Summary:
The tight wrapping of genomic DNA around nucleosomes in the cell nucleus makes it unavailable for gene expression. This study describes a mechanism that allows chromosomal DNA to be locally displaced from nucleosomes for transcription.

The tight wrapping of genomic DNA around nucleosomes in the cell nucleus makes it unavailable for gene expression. A team at Ludwig-Maximilians-Universitaet (LMU) in Munich now describes a mechanism that allows chromosomal DNA to be locally displaced from nucleosomes for transcription.

Related Articles


In higher organisms the genomic DNA is stored in the cell nucleus, wrapped around disk-shaped particles called nucleosomes, each consisting of two pairs of four different histone proteins and accommodating two loops of DNA. Packed in this way to form chromatin, the DNA is protected, but it is inaccessible to the enzymes that mediate DNA transcription, repair and its replication. However, so-called chromatin-remodeling factors, including histone chaperones, ensure that chromatin is maintained in a dynamic state by locally modifying nucleosome structure, interacting with histone subunits and detaching stretches of the packaged DNA from the nucleosome core.

One such factor is the FACT complex which, unlike other histone chaperones, is essential for cell division and DNA repair. FACT interacts specifically with the H2A-H2B histone dimer, which forms part of the canonical nucleosomal particle. "However, until now, we had no structural insight into how these histones are recognized, and how this interaction between FACT and H2A-H2B relates to other biological functions of the FACT complex" says Professor Andreas Ladurner, who is at the LMU's Adolf Butenandt Institute. "So basically, we had no real idea what a reorganized nucleosome might look like."

FACT masks a DNA-binding site To close this gap in our knowledge, Ladurner and his colleagues first looked at the structure of the H2A-H2B-binding domain of the FACT complex on its own. "This analysis provided some hints as to how FACT might interact with its histone partners, but not enough information to allow us to propose a molecular mechanism for the reorganization of nucleosomes," reports Maria Hondele, first author of the new study. "However, using high-resolution X-ray crystallography, we were ultimately able to determine the structure of the whole complex formed between FACT and the histone dimer."

The conformation of the complex revealed that binding of FACT blocks a site on the histone dimer that has a high affinity for DNA. This interaction releases the DNA from the nucleosome sufficiently to permit gene transcription to proceed past the nucleosome. "And in contrast to the conventional view, this mechanism works without unwrapping the DNA completely from the nucleosome," says Ladurner. Thus, the new study affords detailed insights into the mechanisms underlying the dynamic regulation of chromatin accessibility in the cell nucleus.

The work was supported by EU funding through the FP6 Marie Curie Research & Training Network "Chromatin Plasticity," and grants from the DFG to Collaborative Research Center 646 and the Excellence Clusters SyNergy and CIPSM.


Story Source:

The above story is based on materials provided by Ludwig-Maximilians-Universitaet Muenchen (LMU). Note: Materials may be edited for content and length.


Journal Reference:

  1. Maria Hondele, Tobias Stuwe, Markus Hassler, Felix Halbach, Andrew Bowman, Elisa T. Zhang, Bianca Nijmeijer, Christiane Kotthoff, Vladimir Rybin, Stefan Amlacher, Ed Hurt, Andreas G. Ladurner. Structural basis of histone H2A–H2B recognition by the essential chaperone FACT. Nature, 2013; DOI: 10.1038/nature12242

Cite This Page:

Ludwig-Maximilians-Universitaet Muenchen (LMU). "Biochemistry: Unspooling DNA from nucleosomal disks." ScienceDaily. ScienceDaily, 23 May 2013. <www.sciencedaily.com/releases/2013/05/130523083048.htm>.
Ludwig-Maximilians-Universitaet Muenchen (LMU). (2013, May 23). Biochemistry: Unspooling DNA from nucleosomal disks. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2013/05/130523083048.htm
Ludwig-Maximilians-Universitaet Muenchen (LMU). "Biochemistry: Unspooling DNA from nucleosomal disks." ScienceDaily. www.sciencedaily.com/releases/2013/05/130523083048.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins