Featured Research

from universities, journals, and other organizations

Cosmic rays: Galactic knee and extragalactic ankle

Date:
June 3, 2013
Source:
Karlsruhe Institute of Technology
Summary:
A new experiment has yielded the important result that a characteristic bend in the energy spectrum of high-energy cosmic rays, also called "knee", is located at different energies for light and heavy primary particles. Astronomers have found that these cosmic radiation particles are accelerated in galaxies other than the Milky Way.

The KASCADE-Grande measurement field on the premises of KIT was used by scientists to study particle showers produced by cosmic rays.
Credit: KIT

It is obvious from the data of the KASCADE-Grande experiment at the Karlsruhe Institute of Technology (KIT) that the so-called "knee" of the cosmic rays, a bend in the energy spectrum at high energies, is located at different energies for light and heavy particles. As regards light particles, the scientists have now found that the energy spectrum flattens again beyond the knee and forms a type of "ankle." This structure indicates that cosmic radiation particles with energies beyond the knee are accelerated in galaxies other than the Milky Way.

KIT's KASCADE-Grande experiment has yielded the important result that a characteristic bend in the energy spectrum of high-energy cosmic rays, also called "knee," is located at different energies for light and heavy primary particles. The position of the knee appears to vary with the charge of atomic nuclei: KASCADE-Grande detected the "iron knee" at an energy that was 26 times higher than the knee in the spectrum of hydrogen nuclei. Latest findings of the KASCADE-Grande experiment reveal a flattening (also called "anti-knee" or "ankle") of the spectrum of light primary particles above an energy of 1017 electron volts. This structure indicates the existence of a new, now extragalactic component of cosmic rays. This important result in high-energy astrophysics was published recently by the scientists in the Physical Review D journal.

KASCADE-Grande was a measurement field for cosmic rays on the premises of KIT Campus North. The KASCADE experiment was extended by another 37 detector stations and measured particle showers produced by high-energy primary cosmic rays for more than a decade. "With KASCADE-Grande, we measured showers of secondary particles produced by primary particles of cosmic origin at energies of 1014 to 1018 electron volts," explains Dr. Andreas Haungs who coordinates the KASCADE-Grande project at KIT. 1018 electron volts: This exceeds the energy reached by the largest particle accelerators on Earth by several orders of magnitude. The worldwide known and acknowledged experiment was shut down last year. But current analysis of the full data set again yielded a scientific highlight.

The flux of cosmic rays, i.e. of primary particles that can probably be found anywhere in the universe, decreases strongly with increasing particle energy. Slightly above an energy of 1015 electron volts, the "slope" of energy decrease changes: This leads in a bend in the spectrum, the "knee" of cosmic radiation. KASCADE-Grande demonstrated that the knee occurs at different energies for light and heavy elements and that this difference is related to charge. But where does the knee come from and why does its cause depend on the charge of the cosmic particle? This might be explained by magnetic fields in the vicinity of cosmic accelerators. Towards higher energies, they work more effectively for particles of higher charge. Moreover, our galaxy possesses a magnetic halo that prevents most of the particles from leaving our Milky Way. It was concluded from the results of KASCADE-Grande that the primary particles of cosmic rays can be generated and stored in our Milky Way up to energies around 1017 electron volts only. Particles of higher energy have their origin outside of the Milky Way. The transition from galactic to extragalactic cosmic radiation is assumed to lie in the energy range slightly above 1018 electron volts, at the so-called "ankle" of the spectrum. According to the above theory relating to the formation of the knee, the transition to mainly extragalactic cosmic radiation is supposed to become visible in the energy spectrum of light primary particles first, as these are the first to leave their home galaxy.

The identification of an ankle-like structure in the light component at relatively low energies favors theories predicting an early contribution of extragalactic cosmic radiation. "Future results of other experiments studying the spectrum at highest energies will show whether the high-energy light primary particles measured by KASCADE-Grande really are atomic nuclei from another galaxy," says Sven Schoo, the KIT diploma student who analyzed the data. One of these experiments is the Pierre Auger Observatory in Argentina, in the setup and scientific evaluation of which KIT is also involved.

The KASCADE-Grande project is embedded in an international collaboration with scientists from the universities and research institutions in Lodz (Poland), Michoacán (Mexico), Turin (Italy), Bucharest (Romania), Siegen and Wuppertal (Germany), Sao Paulo (Brazil), and Nijmegen (Netherlands). After the measurement phase, the experiment is presently being dismantled. The data taken, however, are still analyzed in detail to study several aspects of astroparticle physics.


Story Source:

The above story is based on materials provided by Karlsruhe Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. W. D. Apel, J. C. Arteaga-Velàzquez, K. Bekk, M. Bertaina, J. Blümer, H. Bozdog, I. M. Brancus, E. Cantoni, A. Chiavassa, F. Cossavella, K. Daumiller, V. de Souza, F. Di Pierro, P. Doll, R. Engel, J. Engler, M. Finger, B. Fuchs, D. Fuhrmann, H. J. Gils, R. Glasstetter, C. Grupen, A. Haungs, D. Heck, J. R. Hörandel, D. Huber, T. Huege, K.-H. Kampert, D. Kang, H. O. Klages, K. Link, P. Łuczak, M. Ludwig, H. J. Mathes, H. J. Mayer, M. Melissas, J. Milke, B. Mitrica, C. Morello, J. Oehlschläger, S. Ostapchenko, N. Palmieri, M. Petcu, T. Pierog, H. Rebel, M. Roth, H. Schieler, S. Schoo, F. G. Schröder, O. Sima, G. Toma, G. C. Trinchero, H. Ulrich, A. Weindl, J. Wochele, M. Wommer, J. Zabierowski. Ankle-like feature in the energy spectrum of light elements of cosmic rays observed with KASCADE-Grande. Physical Review D, 2013; 87 (8) DOI: 10.1103/PhysRevD.87.081101

Cite This Page:

Karlsruhe Institute of Technology. "Cosmic rays: Galactic knee and extragalactic ankle." ScienceDaily. ScienceDaily, 3 June 2013. <www.sciencedaily.com/releases/2013/06/130603113350.htm>.
Karlsruhe Institute of Technology. (2013, June 3). Cosmic rays: Galactic knee and extragalactic ankle. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2013/06/130603113350.htm
Karlsruhe Institute of Technology. "Cosmic rays: Galactic knee and extragalactic ankle." ScienceDaily. www.sciencedaily.com/releases/2013/06/130603113350.htm (accessed August 27, 2014).

Share This




More Space & Time News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

Newsy (Aug. 23, 2014) — The private spaceflight company says it is preparing a thorough investigation into Friday's mishap. Video provided by Newsy
Powered by NewsLook.com
Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) — Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com
Space to Ground: Hello Georges

Space to Ground: Hello Georges

NASA (Aug. 18, 2014) — Europe's ATV-5 delivers new science and the crew tests smart SPHERES. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) — The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins