Featured Research

from universities, journals, and other organizations

Metabolic model of E. coli reveals how bacterial growth responds to temperature change

Date:
June 6, 2013
Source:
University of California - San Diego
Summary:
Bioengineers have developed a computational model of 1,366 genes in E. coli that includes 3D protein structures and has enabled them to compute the temperature sensitivity of the bacterium's proteins. The study opens the door for engineers to create heat-tolerant microbial strains for production of commodity chemicals, therapeutic proteins and other industrial applications.

Bioengineers at the University of California, San Diego have developed a computational model of 1,366 genes in E. coli that includes 3D protein structures and has enabled them to compute the temperature sensitivity of the bacterium's proteins. The study, published June 7 in the journal Science, opens the door for engineers to create heat-tolerant microbial strains for production of commodity chemicals, therapeutic proteins and other industrial applications.

Related Articles


Students of microbiology learn early that bacterial growth is temperature sensitive. For most pathogens, the optimum growth temperature is approximately the same as the body temperature of humans, or 37 C, but some bacteria, called thermophiles, grow well at high temperatures. Determining what precisely causes some bacteria to be more heat sensitive than others has eluded scientists thus far.

"Evidence has accumulated over several decades that proteins are what limit the heat tolerance of cells, but pinpointing the weak points represented by specific proteins has never before been accomplished except when researchers have engineered certain proteins to be sensitive to temperature," said Roger Chang, the first author on the paper who earned his Ph.D. in bioinformatics and systems biology at UC San Diego in 2012. "Not only have we predicted some of these weak points in E. coli but we did so through an unprecedented integrative computational approach drawing from both three-dimensional protein structure analysis and genome-scale cellular network modeling."

Chang completed his Ph.D. in the Systems Biology Research Group of Professor Bernhard Palsson and is currently a postdoctoral fellow at Harvard Medical School.

Chang said the predictions about thermosensitivity of specific proteins in E. coli have been overcome by nutrient supplementation experiments, as predicted by the computational model. The next step is to engineer or evolve thermostabilizing mutations in these proteins to yield genetically thermotolerant strains. The results thus far demonstrate the potential capabilities offered by the emerging field of systems biology, which leverages the power of high-performance computing and an enormous amount of available data from the life sciences to simulate biological activities.

"Broadly speaking, this study demonstrates how fundamental understanding of biology can be revealed by integrating network and structural biology at the genome-scale," said Professor Palsson. "Representing cellular functions in chemically accurate terms enables quantitative computation of cellular behavior. It is quite remarkable how far this field has come in just the past couple of years, and it appears that we can look forward to continuing advances in the near future."


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. L. Chang, K. Andrews, D. Kim, Z. Li, A. Godzik, B. O. Palsson. Structural Systems Biology Evaluation of Metabolic Thermotolerance in Escherichia coli. Science, 2013; 340 (6137): 1220 DOI: 10.1126/science.1234012

Cite This Page:

University of California - San Diego. "Metabolic model of E. coli reveals how bacterial growth responds to temperature change." ScienceDaily. ScienceDaily, 6 June 2013. <www.sciencedaily.com/releases/2013/06/130606154702.htm>.
University of California - San Diego. (2013, June 6). Metabolic model of E. coli reveals how bacterial growth responds to temperature change. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2013/06/130606154702.htm
University of California - San Diego. "Metabolic model of E. coli reveals how bacterial growth responds to temperature change." ScienceDaily. www.sciencedaily.com/releases/2013/06/130606154702.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins