Featured Research

from universities, journals, and other organizations

Self-fertilizing plants contribute to their own demise

Date:
June 10, 2013
Source:
University of Toronto
Summary:
Many plants are self-fertilizing, meaning they act as both mother and father to their own seeds. This strategy -- known as selfing -- guarantees reproduction but, over time, leads to reduced diversity and the accumulation of harmful mutations. A new study shows that these negative consequences are apparent across a selfing plant's genome, and can arise more rapidly than previously thought.

At left: This is Capsella rubella, red shepherd's purse, a selfing derivative species. At right: This is Capsella grandiflora, an outcrossing species.
Credit: Gavin Douglas and Young Wha Lee

Many plants are self-fertilizing, meaning they act as both mother and father to their own seeds. This strategy -- known as selfing -- guarantees reproduction but, over time, leads to reduced diversity and the accumulation of harmful mutations. A new study published in the scientific journal Nature Genetics shows that these negative consequences are apparent across a selfing plant's genome, and can arise more rapidly than previously thought.

Related Articles


In the study, an international consortium led by Stephen Wright in the Department of Ecology and Evolutionary Biology at the University of Toronto sequenced the genome of the plant species Capsella rubella, commonly known as Red Shepherd's Purse. They found clear evidence that harmful mutations were accumulating over the species' relatively short existence.

"The results underscore the long-term advantages of outcrossing, which is the practice of mating between individuals, that gives us the wide array of beautiful flowers," said Wright. "Selfing is a good short-term strategy but over long timescales may lead to extinction."

Red Shepherd's Purse is a very young species that has been self-fertilizing for less than 200,000 years. It is therefore especially well-suited for studying the early effects of self-fertilization. By contrasting Red Shepherd's Purse with the outcrossing species that gave rise to it, the researchers showed that self-fertilization has already left traces across the genome of Red Shepherd's Purse.

"Harmful mutations are always happening," said Wright. "In crops, they could reduce yield just as harmful mutations in humans can cause disease. The mutations we were looking at are changes in the DNA that change the protein sequence and structure."

The findings represent a major breakthrough in the study of self-fertilization.

"It is expected that harmful mutations should accumulate in selfing species, but it has been difficult to support this claim in the absence of large-scale genomic data," says lead author Tanja Slotte, a past member of Wright's research team and now a researcher at Uppsala University. "The results help to explain why ancient self-fertilizing lineages are rare, and support the long-standing hypothesis that the process is an evolutionary dead-end and leads to extinction."

The researchers said that with many crops known to be self-fertilizing, the study highlights the importance of preserving crop genetic variation to avoid losses in yield due to mutations accumulating.


Story Source:

The above story is based on materials provided by University of Toronto. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tanja Slotte, Khaled M Hazzouri, J Arvid Εgren, Daniel Koenig, Florian Maumus, Ya-Long Guo, Kim Steige, Adrian E Platts, Juan S Escobar, L Killian Newman, Wei Wang, Terezie Mandαkovα, Emilio Vello, Lisa M Smith, Stefan R Henz, Joshua Steffen, Shohei Takuno, Yaniv Brandvain, Graham Coop, Peter Andolfatto, Tina T Hu, Mathieu Blanchette, Richard M Clark, Hadi Quesneville, Magnus Nordborg, Brandon S Gaut, Martin A Lysak, Jerry Jenkins, Jane Grimwood, Jarrod Chapman, Simon Prochnik, Shengqiang Shu, Daniel Rokhsar, Jeremy Schmutz, Detlef Weigel, Stephen I Wright. The Capsella rubella genome and the genomic consequences of rapid mating system evolution. Nature Genetics, 2013; DOI: 10.1038/ng.2669

Cite This Page:

University of Toronto. "Self-fertilizing plants contribute to their own demise." ScienceDaily. ScienceDaily, 10 June 2013. <www.sciencedaily.com/releases/2013/06/130610095148.htm>.
University of Toronto. (2013, June 10). Self-fertilizing plants contribute to their own demise. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2013/06/130610095148.htm
University of Toronto. "Self-fertilizing plants contribute to their own demise." ScienceDaily. www.sciencedaily.com/releases/2013/06/130610095148.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) — Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) — A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) — Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins