Featured Research

from universities, journals, and other organizations

Different neuronal groups govern right-left alternation when walking

Date:
June 30, 2013
Source:
Karolinska Institutet
Summary:
Scientists have identified the neuronal circuits in the spinal cord of mice that control the ability to produce the alternating movements of the legs during walking. The study demonstrates that two genetically-defined groups of nerve cells are in control of limb alternation at different speeds of locomotion, and thus that the animals' gait is disturbed when these cell populations are missing.

Yellow-necked mouse walking.
Credit: creativenature.nl / Fotolia

Scientists at Karolinska Institutet in Sweden have identified the neuronal circuits in the spinal cord of mice that control the ability to produce the alternating movements of the legs during walking. The study, published in the journal Nature, demonstrates that two genetically-defined groups of nerve cells are in control of limb alternation at different speeds of locomotion, and thus that the animals' gait is disturbed when these cell populations are missing.

Related Articles


Most land animals can walk or run by alternating their left and right legs in different coordinated patterns. Some animals, such as rabbits, move both leg pairs simultaneously to obtain a hopping motion. In the present study, the researchers Adolfo Talpalar and Julien Bouvier together with professor Ole Kiehn and colleagues, have studied the spinal networks that control these movement patterns in mice. By using advanced genetic methods that allow the elimination of discrete groups of neurons from the spinal cord, they were able to remove a type of neurons characterized by the expression of the gene Dbx1.

"It was classically thought that only one group of nerve cells controls left right alternation," says Ole Kiehn who leads the laboratory behind the study at the Department of Neuroscience. "It was then very interesting to find that there are actually two specific neuronal populations involved, and on top of that that they each control different aspect of the limb coordination."

Indeed, the researchers found that the gene Dbx1 is expressed in two different groups of nerve cells, one of which is inhibitory and one that is excitatory. The new study shows that the two cellular populations control different forms of the behaviour. Just like when we change gear to accelerate in a car, one part of the neuronal circuit controls the mouse's alternating gait at low speeds, while the other population is engaged when the animal moves faster. Accordingly, the study also show that when the two populations are removed altogether in the same animal, the mice were unable to alternate at all, and hopped like rabbits instead.

There are some animals, such as desert mice and kangaroos, which only hop. The researchers behind the study speculate that the locomotive pattern of these animals could be attributable to the lack of the Dbx1 controlled alternating system.


Story Source:

The above story is based on materials provided by Karolinska Institutet. Note: Materials may be edited for content and length.


Journal Reference:

  1. Adolfo E. Talpalar, Julien Bouvier, Lotta Borgius, Gilles Fortin, Alessandra Pierani, Ole Kiehn. Dual-mode operation of neuronal networks involved in left–right alternation. Nature, 2013; DOI: 10.1038/nature12286

Cite This Page:

Karolinska Institutet. "Different neuronal groups govern right-left alternation when walking." ScienceDaily. ScienceDaily, 30 June 2013. <www.sciencedaily.com/releases/2013/06/130630145008.htm>.
Karolinska Institutet. (2013, June 30). Different neuronal groups govern right-left alternation when walking. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2013/06/130630145008.htm
Karolinska Institutet. "Different neuronal groups govern right-left alternation when walking." ScienceDaily. www.sciencedaily.com/releases/2013/06/130630145008.htm (accessed November 1, 2014).

Share This



More Plants & Animals News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Watch Baby Goose Survive A 400-Foot Cliff Dive

Watch Baby Goose Survive A 400-Foot Cliff Dive

Buzz60 (Oct. 31, 2014) For its nature series Life Story, the BBC profiled the barnacle goose, whose chicks must make a daredevil 400-foot cliff dive from their nests to find food. Jen Markham has the astonishing video. Video provided by Buzz60
Powered by NewsLook.com
World's Salamanders At Risk From Flesh-Eating Fungus

World's Salamanders At Risk From Flesh-Eating Fungus

Newsy (Oct. 31, 2014) The import of salamanders around the globe is thought to be contributing to the spread of a deadly fungus. Video provided by Newsy
Powered by NewsLook.com
Alcoholic Drinks In The E.U. Could Get Calorie Labels

Alcoholic Drinks In The E.U. Could Get Calorie Labels

Newsy (Oct. 31, 2014) A health group in the United Kingdom has called for mandatory calorie labels on alcoholic beverages in the European Union. Video provided by Newsy
Powered by NewsLook.com
Malaria Threat in Liberia as Fight Against Ebola Rages

Malaria Threat in Liberia as Fight Against Ebola Rages

AFP (Oct. 31, 2014) Focus on treating the Ebola epidemic in Liberia means that treatment for malaria, itself a killer, is hard to come by. MSF are now undertaking the mass distribution of antimalarials in Monrovia. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins