Featured Research

from universities, journals, and other organizations

Biochemical role of crucial TonB protein in bacterial iron transport and pathogenesis

Date:
July 1, 2013
Source:
Kansas State University
Summary:
Scientists have discovered the role of the membrane protein TonB in bacteria that cause a wide variety of diseases, including typhoid fever, plague, meningitis and dysentery. Results may lead to new and improved human and animal antibiotics.

A Kansas State University-led study has discovered the role of a protein in bacteria that cause a wide variety of diseases, including typhoid fever, plague, meningitis and dysentery. The results may lead to new and improved antibiotics for humans and animals.

Related Articles


Phillip E. Klebba, professor and head of the department of biochemistry and molecular biophysics, made the findings with two colleagues in the department: Lorne D. Jordan, doctoral candidate, Manhattan, and Salete M. Newton, research professor. The collaboration included other biophysicists at the University of Oklahoma and Purdue University. Their study, "Energy-dependent motion of TonB in the Gram-negative bacterial inner membrane," appears in the journal Proceedings of the National Academy of Sciences, or PNAS.

The research focuses on the central role of iron in biochemistry. Both animals and bacteria require iron for biological processes like energy generation and DNA, Klebba said. The iron acquisition systems of bacteria, however, contribute to infectious diseases.

"Iron is the object of a microbiological war in the human body," Klebba said. "Host proteins defend cells and tissues by sequestering the metal, and successful pathogens overcome this barrier and capture the iron. But the iron transport mechanisms of pathogenic organisms are not well understood."

The membrane protein TonB plays an indispensable role in the uptake of iron by Gram-negative bacteria -- a classification of bacteria that is more resistant to antibiotics because of a nearly impenetrable cell wall. Gram-negative bacteria can cause diseases such as Escherichia coli, Salmonella typhi, Yersinia pestis, Vibrio cholera, Brucella abortus, Neisseria meningitidis cause many diseases and clinical conditions; they all transport iron by the same mechanism that depends on the actions of TonB.

Despite decades of research, the biochemical role of TonB in Gram-negative bacteria was a scientific mystery, Klebba said. He and his colleagues found that the cellular electrochemical forces put TonB in a spinning motion that provides the energy and physical mechanism to enable iron uptake into the cell.

"In this sense TonB acts like an electric motor that constantly rotates in response to the cellular energy flow," Klebba said. "TonB is one of nature's smallest and oldest electrical devices."

According to Klebba, future antibiotics may block the functions of TonB, prevent iron acquisition by Gram-negative cells, and consequently protect humans and animals from infection by such pathogen strains of bacteria.

Besides the PNAS study, Klebba recently shared the findings at the 2013 Gordon Conference on Mechanisms of Membrane Transport in South Hadley, Mass.


Story Source:

The above story is based on materials provided by Kansas State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. L. D. Jordan, Y. Zhou, C. R. Smallwood, Y. Lill, K. Ritchie, W. T. Yip, S. M. Newton, P. E. Klebba. Energy-dependent motion of TonB in the Gram-negative bacterial inner membrane. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1304243110

Cite This Page:

Kansas State University. "Biochemical role of crucial TonB protein in bacterial iron transport and pathogenesis." ScienceDaily. ScienceDaily, 1 July 2013. <www.sciencedaily.com/releases/2013/07/130701100556.htm>.
Kansas State University. (2013, July 1). Biochemical role of crucial TonB protein in bacterial iron transport and pathogenesis. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2013/07/130701100556.htm
Kansas State University. "Biochemical role of crucial TonB protein in bacterial iron transport and pathogenesis." ScienceDaily. www.sciencedaily.com/releases/2013/07/130701100556.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins