Featured Research

from universities, journals, and other organizations

Cells in the early embryo battle each other to death for becoming part of the organism

Date:
July 11, 2013
Source:
Centro Nacional de Investigaciones Cardiovasculares
Summary:
Researchers have found that during the early stages of mammalian development, embryonic cells embark on a battle for survival. Through this battle, the less active of these cells are eliminated by their stronger sisters.

Left; An early mouse embryo has been generated in a genetic mosaic of two cell populations, green and blue. Center, three days later, the green cells, in which Myc protein increased, have won the battle and removed the blue. Right, This shows more Myc cell (green) engulfing its neighbor.
Credit: CNIC

Spanish researchers at the Centro Nacional de Investigaciones Cardiovasculares (CNIC) have found that during the early stages of mammalian development, embryonic cells embark on a battle for survival. Through this battle, the less active of these cells are eliminated by their stronger sisters.

The work is published today in the journal Nature.

This phenomenon, termed cell competition, occurs in a defined time window, between days 3 and 7 of mouse development. During this period all embryonic cells compete with each other, as explained by Dr. Cristina Claveria, first author of the study, and Dr. Miguel Torres, director of this work and Head of the Department of Cardiovascular Development and Repair at CNIC.

"Thanks to cell competition the developing organism optimizes itself by selecting the cells theoretically more capable of supporting vital functions throughout the life of the new individual," says Dr. Claveria. According to the authors, this would be particularly important in long-lived organisms, like humans, where the functionality of their tissues must be maintained throughout a long life.

Dr. Miguel Torres also explains that when cell competition is prevented, cells that normally would have lost the battle now become able to contribute to the new organism: "We think, however, that this organism will probably be less capable than the one which would have been formed under normal circumstances. In what sense will it be less adequate is a matter of great interest that we will address in the coming years."

Indeed, the researchers are able to determine in advance which cells will win this battle: those with higher levels of the Myc protein, an important controller of cell metabolic capacity. Moreover, using a new technique that they have developed for the production of genetic mosaics, they are able to manipulate the levels of Myc protein in cells, thus changing the outcome of the fight.

According to Claveria and Torres, the study shows that the early embryo is a mosaic of cells with very different levels of Myc ,in which cells with higher levels of Myc eliminate those with lower levels. However, it is important to understand that those who die are viable cells. "Their removal occurs only because the embryo has more suitable cells able to replace them, and therefore this is an optimization mechanism, not a repair one," the researchers point out.

A fascinating aspect of the work is the illustration that this battle does not waste cellular resources; dying loser cells are engulfed and digested by their winning neighbours, who then recycle and use all the nutrients for the benefit of the embryo. This research provides answers to some of the questions raised nearly forty years ago by Spanish scientists Ginιs Morata and Pedro Ripoll, who in 1975 discovered cell competition in the fruit fly. On that occasion, by experimental manipulation, they described the phenomenon in the fly's wing. Since then cell competition has been suggested to be involved in multiple processes, including tumour progression and tissue regeneration; but never, until this study, had a natural function been described.


Story Source:

The above story is based on materials provided by Centro Nacional de Investigaciones Cardiovasculares. Note: Materials may be edited for content and length.


Journal Reference:

  1. Cristina Claverνa, Giovanna Giovinazzo, Rocνo Sierra, Miguel Torres. Myc-driven endogenous cell competition in the early mammalian embryo. Nature, 2013; DOI: 10.1038/nature12389

Cite This Page:

Centro Nacional de Investigaciones Cardiovasculares. "Cells in the early embryo battle each other to death for becoming part of the organism." ScienceDaily. ScienceDaily, 11 July 2013. <www.sciencedaily.com/releases/2013/07/130711103244.htm>.
Centro Nacional de Investigaciones Cardiovasculares. (2013, July 11). Cells in the early embryo battle each other to death for becoming part of the organism. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2013/07/130711103244.htm
Centro Nacional de Investigaciones Cardiovasculares. "Cells in the early embryo battle each other to death for becoming part of the organism." ScienceDaily. www.sciencedaily.com/releases/2013/07/130711103244.htm (accessed September 30, 2014).

Share This



More Health & Medicine News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How 'Yes Means Yes' Defines Sexual Assault

How 'Yes Means Yes' Defines Sexual Assault

Newsy (Sep. 29, 2014) — Aimed at reducing sexual assaults on college campuses, California has adopted a new law changing the standard of consent for sexual activity. Video provided by Newsy
Powered by NewsLook.com
Scientists May Have Found An Early Sign Of Pancreatic Cancer

Scientists May Have Found An Early Sign Of Pancreatic Cancer

Newsy (Sep. 29, 2014) — Researchers looked at 1,500 blood samples and determined people who developed pancreatic cancer had more branched chain amino acids. Video provided by Newsy
Powered by NewsLook.com
Colo. Doctors See Cluster of Enterovirus Cases

Colo. Doctors See Cluster of Enterovirus Cases

AP (Sep. 29, 2014) — Doctors at the Children's Hospital of Colorado say they have treated over 4,000 children with serious respiratory illnesses since August. Nine of the patients have shown distinct neurological symptoms, including limb weakness. (Sept. 29) Video provided by AP
Powered by NewsLook.com
Dr.'s Unsure of Cause of Fast-Spreading Virus

Dr.'s Unsure of Cause of Fast-Spreading Virus

AP (Sep. 29, 2014) — Doctors at the Children's Hospital of Colorado say they have treated over 4,000 children with serious respiratory illnesses since August. Nine of the patients have shown distinct neurological symptoms, including limb weakness. (Sept. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins