Featured Research

from universities, journals, and other organizations

Biochemists uphold law of physics

Date:
July 15, 2013
Source:
University of California - Davis
Summary:
Experiments by biochemists show for the first time that a law of physics, the ergodic theorem, can be demonstrated by a collection of individual protein molecules -- specifically, a protein that unwinds DNA.

Screen shot of a video showing RecBCD enzymes unwinding DNA at different speeds. The bright ball at left is a bead, the bright strand is a stretch of DNA that shortens as it is unwound by the enzyme. The enzymes show ergodic behavior, supporting an important theory in statistical physics.
Credit: Bian Liu, UC Davis

Experiments by biochemists at the University of California, Davis show for the first time that a law of physics, the ergodic theorem, can be demonstrated by a collection of individual protein molecules -- specifically, a protein that unwinds DNA.

The work will be published online by the journal Nature on July 14.

Using technology invented at UC Davis for watching single enzymes at work, Bian Liu, a graduate student in the Biophysics Graduate Group and professor Steve Kowalczykowski, Department of Microbiology and Molecular Genetics and UC Davis Cancer Center, found that when they paused and restarted a single molecule of the DNA-unwinding enzyme RecBCD, it could restart at any speed achieved by the whole population of enzymes.

"It's pretty impressive," said Daniel Cox, a physics professor at UC Davis who was not involved in the work. "The laws of physics should apply to biological systems, and it turns out they do."

The results also have implications for understanding how proteins fold into their correct shape, for exploring interactions between drugs and their targets, and for engineering enzymes for new functions.

The ergodic theorem, proposed by mathematician George Birkhoff in 1931, holds that if you follow an individual particle over an infinite amount of time, it will go through all the states that are seen in an infinite population at an instant in time. It's a fundamental assumption in statistical mechanics -- but difficult to prove in an experiment.

Liu and Kowalczykowski weren't attempting to test laws of physics when they began the work. They wanted to know why RecBCD, an enzyme that unwinds DNA in E. coli bacteria, showed so much variability in its rate of action.

RecBCD attaches to and moves along DNA, unwinding the double helix into two separate strands. It has two jobs in the cell: to allow damaged DNA to be repaired, and to break down invading "foreign" DNA from viruses.

In 2001, Kowalczykowski's laboratory, with the late professor Ronald Baskin at UC Davis, developed a technique to trap single molecules of RecBCD and watch them at work on a strand of DNA in real time. They have since exploited the method to study how DNA is repaired -- in humans, a vital process in protecting against cancer and developmental defects.

"Ever since the original experiments, we've noticed RecBCD molecules have quite a broad range of speeds," Kowalczykowski said.

Liu used the single-molecule visualization technique to measure the rates of hundreds of RecBCD molecules, finding bell-shaped curves for the whole population.

One explanation could be that a large proportion of the proteins were not folded properly and were "trapped" in an inefficient state. However, mild heat or unfolding treatments, which should have allowed the proteins to relax into their correct folded state, had no effect.

RecBCD usually runs for about a minute before stopping spontaneously. Liu found that he could stop the enzyme early by taking away ATP, the chemical fuel that makes the enzyme work.

When he brought back the fuel, he found that the enzymes started up again -- but at a random speed, not related to their previous rate. Overall, the individual RecBCD proteins could restart at any speed within the bell-shaped spread shown by all the proteins.

The experiment shows that RecBCD can move through a wide range of slightly different conformations in which it works at slightly different speeds. However, when it is attached to a step on the DNA ladder, it is locked in shape. Because the time for the enzyme to move from step to step along DNA is shorter than the time it needs to change conformation (about one second), it remains in the same conformation as long as it is moving along DNA, Kowalczykowski said.

What is the point? Why not just have all the enzymes work at one, optimal rate? Having this important enzyme able to operate at a range of speeds might give the cell flexibility to respond to rapidly changing conditions, Kowalczykowski said. For example, degradation of foreign DNA is a process that needs to go quite fast: copying and repairing DNA might require the enzyme to work more slowly, in combination with other proteins.

The work was funded by the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of California - Davis. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bian Liu, Ronald J. Baskin, Stephen C. Kowalczykowski. DNA unwinding heterogeneity by RecBCD results from static molecules able to equilibrate. Nature, 2013; DOI: 10.1038/nature12333

Cite This Page:

University of California - Davis. "Biochemists uphold law of physics." ScienceDaily. ScienceDaily, 15 July 2013. <www.sciencedaily.com/releases/2013/07/130715091224.htm>.
University of California - Davis. (2013, July 15). Biochemists uphold law of physics. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2013/07/130715091224.htm
University of California - Davis. "Biochemists uphold law of physics." ScienceDaily. www.sciencedaily.com/releases/2013/07/130715091224.htm (accessed September 2, 2014).

Share This




More Plants & Animals News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Snack Attack: Study Says Action Movies Make You Snack More

Snack Attack: Study Says Action Movies Make You Snack More

Newsy (Sep. 2, 2014) — You're more likely to gain weight while watching action flicks than you are watching other types of programming, says a new study published in JAMA. Video provided by Newsy
Powered by NewsLook.com
Get A Mortgage, Receive A Cat — Only In Russia

Get A Mortgage, Receive A Cat — Only In Russia

Newsy (Sep. 2, 2014) — The incentive is in keeping with a Russian superstition that it's good luck for a cat to be the first to cross the threshold of a new home. Video provided by Newsy
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) — The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Sharks Off the Menu and on the Tourist Trail in Palau

Sharks Off the Menu and on the Tourist Trail in Palau

AFP (Sep. 2, 2014) — Tourists in Palau clamour to dive with sharks thanks to a pioneering conservation initiative -- as the island nation plans to completely ban commercial fishing in its vast ocean territory. 01:15 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins