Featured Research

from universities, journals, and other organizations

Catching aerosols in a CATS eye

July 31, 2013
Quick looks by a special CATS-eye attached to the International Space Station will help scientists catalog and track particles in Earth's atmosphere and act as a pathfinder for a new satellite planned for 2021.

This is a photo showing how payloads attach to the Exposed Facility of the Japanese Experiment Module on the International Space Station. The laser will always fire directly down from the space station into the atmosphere.
Credit: NASA

Quick looks by a special CATS-eye attached to the International Space Station will help scientists catalog and track particles in Earth's atmosphere and act as a pathfinder for a new satellite planned for 2021.

"We're going to do operational Earth science that's new, looking at aerosols, pollution and clouds and real-time inputs to global climate models," said Matthew McGill, principal investigator for the Cloud-Aerosol Transport System (CATS) at NASA's Goddard Space Flight Center in Greenbelt, Md. CATS will also help show NASA how to do low-cost, fast-turnaround payloads on station."

The approach is similar to low-cost Hitchhiker payloads -- small studies that "hitched" a ride into orbit with larger investigations -- that NASA flew on the space shuttle during 1984-2003. "The International Space Station Program looked at our airborne Cloud Physics Lidar (CPL) instrument and its 15-year heritage flying near the edge of space [on the ER-2 aircraft] and asked, 'Can you put that in a box?'" McGill said. "In other words, could we take this proven, autonomous aircraft instrument and transfer the design to be space station compatible, and CATS was born."

Weather satellites do a phenomenal job of monitoring clouds, air temperatures, moisture and other factors. But measuring aerosols, whose role in weather and climate is a significant mystery, requires probing the air by using light in a manner similar to radar. This will be the job of the CATS investigation.

Aerosol means particles or droplets dissolved in air. The term is a century old, but humans have always been around them in the form of clouds, fog, smoke rising from a fire, exhaust from a car, spray from a sneeze, and even some emissions from plants. Aerosols come in all shapes, sizes, populations, masses and other factors, making them a challenge for scientists trying to understand their impact on weather and climate.

"[Computer] models need to know if there is a layer of stuff in the atmosphere, its altitude -- because that matters a lot -- how thick that layer is, and what it is made of," McGill explained. "The fundamental data from CATS will tell us if something is there, and then take ratios of different readings to tell us if it's ice, water or aerosols, and if it is an aerosol, is it dust, smoke or pollution."

Knowing what is where is important to understanding how energy is transported in the atmosphere. Particulates can absorb different quantities of sunlight or heat from surrounding air, and carry that energy to be released elsewhere.

Researchers also need to know how aerosol populations change during the day. Most Earth observing satellites are in polar orbits that cross the equator at the same local time. That ensures an apples-to-apples comparison of data taken by multiple instruments across the years. But this also keeps them from observing the faster ebb and flow of some events in the atmosphere during the day or night. The space station's orbit will provide that coverage.

CATS will be the fourth space-based lidar -- light detection and ranging -- designed to probe atmospheric aerosols by using a laser light like a radar. The Lidar In-space Technology Experiment (LITE), which flew on the space shuttle STS-64 mission in 1994, demonstrated that the concept is sound. The Geoscience Laser Altimeter System (GLAS) instrument on ICESat began space measurements in 2003. It operated for 17 campaigns, each about one month long, and made 1.98 billion total measurements. The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite has made more than 3 billion soundings of the atmosphere since 2006. CATS will provide continuity for CALIPSO data and help bridge the gap until the 2021 launch of the Aerosol-Cloud-Ecosystems (ACE) mission.

Lidar works much like its namesake, radar. A signal is emitted -- radio waves for radar, light for lidar -- and electronics capture and analyze the reflection.

Two factors make lasers essential to this kind of work. First, they emit on a very narrow wavelength band. That makes it easier to measure changes caused by particles that reflect the incident light. Second, because the band is so narrow the light beam itself can be narrowly focused, like a needle probing tiny spots. CATS will be able to detect single photons returning from the scanned area.

Distance is the first measurement, giving the height and thickness of aerosol layers. Other factors, including how the signal is extinguished within a layer and polarization (similar to polarizing sunglasses), carry clues about the sizes and distribution of particles.

CATS uses a three-in-one laser that simultaneously produces near-infrared, green and ultraviolet light. "Some people expect to see a green light saber coming from station," McGill said. "That is absolutely not the case."

CATS will flash 5,000 times a second in pulses that spread out to a circle more than 14 feet wide and move as fast as the station. Putting CATS aboard the space station has a significant advantages over conventional remote sensing satellites in that it is far less expensive than building and launching a dedicated platform.

Work is underway to get CATS ready for its future flight. "We're uncovering a lot of places where we have to make new rules," McGill added, referring to building for space station.

When it launches, CATS will be as close to plug-n-play as space experiment can get. It will attach to the Exposed Facility on the Japanese Experiment Module (JEM-EF) after delivery by Japan's HTV in 2014.

McGill and his colleagues hope to operate the instrument for at least three years. That's more than 400 billion blinks of a CATS's eye to help diagnose the health of Earth's atmosphere.

Story Source:

The above story is based on materials provided by NASA. Note: Materials may be edited for content and length.

Cite This Page:

NASA. "Catching aerosols in a CATS eye." ScienceDaily. ScienceDaily, 31 July 2013. <www.sciencedaily.com/releases/2013/07/130731113750.htm>.
NASA. (2013, July 31). Catching aerosols in a CATS eye. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2013/07/130731113750.htm
NASA. "Catching aerosols in a CATS eye." ScienceDaily. www.sciencedaily.com/releases/2013/07/130731113750.htm (accessed September 19, 2014).

Share This

More Earth & Climate News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Wildfires in CA Burn Forest Asunder

Raw: Wildfires in CA Burn Forest Asunder

AP (Sep. 18, 2014) An out-of-control Northern California wildfire has nearly 2,800 people from their homes as it continues to grow, authorities said Thursday. Authorities said a man has been arrested on suspicion of arson for starting the fire on Saturday. (Sept. 18) Video provided by AP
Powered by NewsLook.com
Raw: Elephant Undergoes Surgery in Tbilisi Zoo

Raw: Elephant Undergoes Surgery in Tbilisi Zoo

AP (Sep. 18, 2014) Grand the elephant has successfully undergone surgery to remove a portion of infected tusk at Tbilisi Zoo in Georgia. British veterinary surgeons used an electric drill to extract the infected piece. (Sept. 18) Video provided by AP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins