Featured Research

from universities, journals, and other organizations

Key protein that modulates organismal aging identified

Date:
August 8, 2013
Source:
Sanford-Burnham Medical Research Institute
Summary:
Scientists have identified a key factor that regulates the autophagy process, a kind of cleansing mechanism for cells in which waste material and cellular debris is gobbled up to protect cells from damage, and in turn, modulates aging.

This shows the nuclear localization of HLH-30/TFEB in C. elegans.
Credit: Sanford-Burnham Medical Research Institute

Scientists at Sanford-Burnham Medical Research Institute have identified a key factor that regulates the autophagy process, a kind of cleansing mechanism for cells in which waste material and cellular debris is gobbled up to protect cells from damage, and in turn, modulates aging. The findings, published in Nature Communications today, could lead to the development of new therapies for age-related disorders that are characterized by a breakdown in this process.

Malene Hansen, Ph.D., associate professor in Sanford-Burnham's Del E. Webb Center for Neuroscience, Aging and Stem Cell Research, and her team as well as collaborators found a transcription factor -- an on/off switch for genes -- that induces autophagy in animal models, including the nematode C. elegans, the primary model organism studied in the Hansen lab. This transcription factor, called HLH-30, coordinates the autophagy process by regulating genes with functions in different steps of the process. Two years ago, researchers discovered a similar transcription factor, or orthologue, called TFEB that regulates autophagy in mammalian cells.

"HLH-30 is critical to ensure longevity in all of the long-lived C. elegans strains we tested," says Hansen. "These models require active HLH-30 to extend lifespan, possibly by inducing autophagy. We found this activation not only in worm longevity models, but also in dietary-restricted mice, and we propose the mechanism might be conserved in higher organisms as well."

HLH-30 is the first transcription factor reported to function in all known autophagy-dependent longevity paradigms, strengthening the emerging concept that autophagy can contribute to long lifespan. In a previous study, Hansen and her colleagues discovered that increased autophagy has an anti-aging effect, possibly by promoting the activity of an autophagy-related, fat-digesting enzyme. With these findings, scientists now know a key component of the regulation of autophagy in aging.

Hansen's team is now working to find therapeutic targets, particularly upstream kinases, molecules that change protein function, which might actually phosphorylate the transcription factor to alter its function. "We already have a clue about the protein TOR, a master regulator that influences metabolism and aging in many species, but there might be other kinases that regulate HLH-30 or TFEB activity as well," says lead study author Louis Renι Lapierre, Ph.D., a postdoctoral fellow in Hansen's laboratory, and a recent recipient of a K99/R00 Pathway to Independence career award from the National Institutes of Health.

Autophagy has become the subject of intense scientific scrutiny over the past few years, particularly since the process -- or its malfunction -- has been implicated in many human diseases, including cancer, Alzheimer's, as well as cardiovascular disease and neurodegenerative disorders. HLH-30 and TFEB may represent attractive targets for the development of new therapeutic agents against such diseases.


Story Source:

The above story is based on materials provided by Sanford-Burnham Medical Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Louis R. Lapierre, C. Daniel De Magalhaes Filho, Philip R. McQuary, Chu-Chiao Chu, Orane Visvikis, Jessica T. Chang, Sara Gelino, Binnan Ong, Andrew E. Davis, Javier E. Irazoqui, Andrew Dillin, Malene Hansen. The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nature Communications, 2013; 4 DOI: 10.1038/ncomms3267

Cite This Page:

Sanford-Burnham Medical Research Institute. "Key protein that modulates organismal aging identified." ScienceDaily. ScienceDaily, 8 August 2013. <www.sciencedaily.com/releases/2013/08/130808091618.htm>.
Sanford-Burnham Medical Research Institute. (2013, August 8). Key protein that modulates organismal aging identified. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2013/08/130808091618.htm
Sanford-Burnham Medical Research Institute. "Key protein that modulates organismal aging identified." ScienceDaily. www.sciencedaily.com/releases/2013/08/130808091618.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) — Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) — Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins