Featured Research

from universities, journals, and other organizations

Ecologists get first bumblebees' eye view of the landscape

Date:
August 22, 2013
Source:
British Ecological Society (BES)
Summary:
Ecologists have produced the most detailed picture yet of how bumblebees use the landscape thanks to DNA technology and remote sensing. The results – which come from the largest ever study of wild bumblebee nests – could help farmers and policy makers ensure the countryside is better suited to the needs of these vital but declining pollinators.

Bombus ruderatus.
Credit: Copyright Claire Carvell

Ecologists have produced the most detailed picture yet of how bumblebees use the landscape thanks to DNA technology and remote sensing. The results -- which come from the largest ever study of wild bumblebee nests -- could help farmers and policy makers ensure the countryside is better suited to the needs of these vital but declining pollinators.

Related Articles


Despite their size and often conspicuous colouring, bumblebees are difficult to study in the wild because their nests are almost impossible to find. To work out how far bumblebees forage from their nests, a team of ecologists from the Centre for Ecology and Hydrology (CEH), University of East Anglia, University of Bristol, and Institute of Zoology instead took advantage of bumblebees' unusual genetics.

According to Dr Matt Heard of CEH: "All workers in a bumblebee colony are daughters of a singly-mated queen, which means they are highly related in genetic terms. We decided to exploit this interesting aspect of their biology using a novel combination of genetics, field studies and landscape modelling."

The team sampled DNA non-lethally from live wild bumblebees, including 2577 worker and 537 queen bees of five different species. Back in the laboratory they genotyped the samples, which allowed them to estimate how closely related the bees were across the landscape and group sisters, mothers and daughters into more than 2000 colonies.

This information was then overlaid onto detailed images of the study landscape taken by airborne remote sensing. The maps allowed the team to estimate the location of each colony as well as how far each bumblebee travelled to find food. These distances varied between averages of 268m to 553m depending on species, but were much greater, over 2km, for colonies in parts of the landscape with fewer flowers.

The results are important because they will allow policy makers and farmers to improve conservation schemes. "By using the secrets hidden within the DNA of bumblebees we can start to understand how queens and their colonies are using the landscape around them. Most importantly, we can ask whether conservation schemes to improve the countryside for bees, like planting more flowers on farmland, are having a positive effect. For example, reducing the distance that bumblebees have to fly to find food might increase their chances of survival into the next generation because they can devote more energy to reproduction," explains Dr Heard.

"Our findings could help land managers to plan schemes to help conserve bumblebee populations in both agricultural and urban areas, and to enhance pollination services for crops and biodiversity."

Under current agri-environment schemes, the UK Government pays farmers to manage their land for the benefit of particular habitats and species. However, the area targeted for bees and other pollinators is less than 0.1% of the total managed area. Bumblebees are among the most important pollinators of many food crops and wild plants.

The next stage of the research is to use mathematical models to produce a "bees' eye view" of the landscape. Dr Claire Carvell, the project leader, says "Ultimately we want to be able to predict which types of landscapes work best for bumblebees and how these can be created against the backdrop of modern farming and the need for sustainable food production," .

Dr Heard will present the team's findings to INTECOL at ExCel, London on Thursday 22 August 2013. He and Dr Carvell are working with Professor Andrew Bourke at the University of East Anglia, Dr Seirian Sumner and Dr Stephanie Dreier at the University of Bristol, and Dr Jinliang Wang at the Institute of Zoology. The research is funded by the national Insect Pollinators Initiative.


Story Source:

The above story is based on materials provided by British Ecological Society (BES). Note: Materials may be edited for content and length.


Cite This Page:

British Ecological Society (BES). "Ecologists get first bumblebees' eye view of the landscape." ScienceDaily. ScienceDaily, 22 August 2013. <www.sciencedaily.com/releases/2013/08/130822090035.htm>.
British Ecological Society (BES). (2013, August 22). Ecologists get first bumblebees' eye view of the landscape. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2013/08/130822090035.htm
British Ecological Society (BES). "Ecologists get first bumblebees' eye view of the landscape." ScienceDaily. www.sciencedaily.com/releases/2013/08/130822090035.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins