Featured Research

from universities, journals, and other organizations

Chronic Myelogenous Leukemia: Anchoring ABL for a better fate

Date:
August 27, 2013
Source:
Publicase Comunicação Científica
Summary:
By providing a detailed description of the mechanisms by which ABL, a protein associated with Chronic Myelogenous Leukemia, undergoes cell death, this new study offers fresh perspectives on how cells carrying the Philadelphia Chromosome escape apoptosis and become immortal.

Chronic Myelogenous Leukemia (CML) is a cancer of the white blood cells that is most commonly found in adults and in the elderly. Its incidence has been estimated to be 1 to 2 in 100,000 people. CML was the first cancer to be associated with a genetic abnormality, known as the Philadelphia Chromosome, which 95% of all CML patients carry in their cells.

Related Articles


The Philadelphia Chromosome is formed by exchanges of material belonging to two distinct chromosomes, number 9 and number 22. To form the Philadelphia Chromosome, these two chromosomes break at very specific places, disrupting the BCR (in chromosome 22) and the ABL (in chromosome 9) genes that were otherwise normal. Juxtaposition of these two genes in the Philadelphia Chromosome creates an abnormal kinase tyrosine known as BCR/ABL, which is an enzyme associated with cell regulation. The Philadelphia Chromosome is associated with loss of cell control and presence of immortal cells, which leads to cancer.

In the 1990s, ST1-571 (known as imatinib or Gleevec), a new inhibitor of kinase tyrosine, was developed and tested against CML cells. Since then, the drug has been used as the first line of treatment in many patients, increasing survival rates and improving patients' quality of life. However, some patients develop resistance to the drug, which has fostered development of novel drugs that act on alternative sites on the BCR/ABL enzyme.

Aiming to gain in-depth knowledge about the mechanisms involved in ABL control in normal cells, a group led by Dr. Jerson Silva at the Federal University of Rio de Janeiro, Brazil used small angle X-ray scattering, nuclear magnetic resonance, and confocal microscopy to investigate the dynamics of the entire ABL regulatory unit. The study shows that activation of the protein releases intramolecular interactions between a regulatory unit found in the N-terminal region of the ABL, the so-called N Cap, and a number of molecular modules, and pushes ABL to anchor on the cell membrane. The whole complex undergoes motions lasting micro- to milliseconds that ultimately result in the death of the cell.

The study also reveals that changes in the N-terminal region, or its absence, are associated with the entire cell escaping apoptosis, the mechanism responsible for cell death. With no apoptosis, cells become immortal and cancer strikes.

The finding has major implications for CML research as it has been known for some time that CML cells are resistant to apoptosis and that, unlike their normal counterparts, they are not found anchored to the cell membrane but loose in the cell cytoplasm. According to Guilherme A. P. de Oliveira, the first author of the study, "our findings indicate that the ABL regulatory unit is involved with the right localization of the enzyme in the cell, dictating the fate of the cell."

The results also gain further importance in the light of recent studies showing that ABL kinases have enhanced expression and activity in some solid tumors.


Story Source:

The above story is based on materials provided by Publicase Comunicação Científica. Note: Materials may be edited for content and length.


Journal Reference:

  1. G. A. P. de Oliveira, E. G. Pereira, G. D. S. Ferretti, A. P. Valente, Y. Cordeiro, J. L. Silva. Intramolecular dynamics within the N-Cap-SH3-SH2 regulatory unit of the c-Abl tyrosine kinase reveal targeting to the cellular membrane. Journal of Biological Chemistry, 2013; DOI: 10.1074/jbc.M113.500926

Cite This Page:

Publicase Comunicação Científica. "Chronic Myelogenous Leukemia: Anchoring ABL for a better fate." ScienceDaily. ScienceDaily, 27 August 2013. <www.sciencedaily.com/releases/2013/08/130827113027.htm>.
Publicase Comunicação Científica. (2013, August 27). Chronic Myelogenous Leukemia: Anchoring ABL for a better fate. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2013/08/130827113027.htm
Publicase Comunicação Científica. "Chronic Myelogenous Leukemia: Anchoring ABL for a better fate." ScienceDaily. www.sciencedaily.com/releases/2013/08/130827113027.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) — A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) — Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) — A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) — Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins