Featured Research

from universities, journals, and other organizations

Deep-sea squid with tentacle tips that 'swim' on their own

Date:
September 3, 2013
Source:
Monterey Bay Aquarium Research Institute
Summary:
Many deep-sea animals such as anglerfish use parts of their body as lures to attract prey. Researchers have now described a deep-sea squid whose tentacle tips flap and flutter as if swimming on their own. The researchers hypothesize that the motion of these tentacle tips may induce small shrimp and other animals to approach within reach of the squid's arms.

A Grimalditeuthis bonplandi squid with one of its tentacles extended. The arrow points to a small "club" at the end of the tentacle that wiggles and appears to swim independently of the rest of the animal.
Credit: Image: 2005 MBARI

Many deep-sea animals such as anglerfish use parts of their body as lures to attract prey. Some deep-sea squids may use this strategy as well. In a recent paper, researchers associated with the Monterey Bay Aquarium Research Institute (MBARI) describe a deep-sea squid that appears to use a different method to lure prey -- its tentacle tips flap and flutter as if swimming on their own. The researchers hypothesize that the motion of these tentacle tips may induce small shrimp and other animals to approach within reach of the squid's arms.

Related Articles


Most squids have eight arms and two longer "feeding" tentacles. The tips of the tentacles, which are often broader and armed with suckers or hooks, are known as "clubs." Such squids hunt by rapidly extending their tentacles and then grabbing prey with their clubs. The squids also use the tentacles to carry captured prey to their mouths.

The deep-sea squid Grimalditeuthis bonplandi seems to use a very different feeding strategy. A slow swimmer with a weak, gelatinous body, its tentacles are long, thin, fragile, and too weak to capture prey. Unlike any other known squid, its tentacles do not have any suckers, hooks, or photophores (glowing spots).

Until just a few years ago, the marine biologists had only seen specimens of G. bonplandi that were dead or dying after having been captured in deep-sea trawl nets. However, using video from underwater robots known as remotely operated vehicles (ROVs), the authors of the recent paper were able to study how these squids behave in their native habitat, 1,000 to 2,000 meters (roughly one mile) below the ocean surface.

The lead author of the paper, Henk-Jan Hoving, was a postdoctoral fellow at MBARI from August 2010 until July 2013. He and his coauthors examined video of G. bonplandi taken during an MBARI ROV dive in Monterey Bay. They also analyzed video collected by several oil-industry ROVs in the Gulf of Mexico, as part of the Scientific and Environmental ROV Partnership Using Existing Industrial Technology (SERPENT) project. In addition, the researchers dissected over two dozen preserved squids from various collections.

When the ROVs first approached, most of the squids were hanging motionless in the water with their eight arms spread wide and their two long, thin tentacles dangling below. What intrigued the researchers was that the squids' tentacles did not move on their own, but were propelled by fluttering and flapping motions of thin, fin-like membranes on the clubs. The clubs appeared to swim on their own, with the tentacles trailing behind.

Instead of using its muscles to extend its tentacles, like most squids, G. bonplandi sends its clubs swimming away from its body, dragging the tentacles behind them. After the tentacles are extended, the clubs continue to wiggle independently of the tentacles.

When threatened, instead of retracting its tentacles as most squids would do, G. bonplandi swims down toward its clubs. After swimming alongside its clubs, the squid coils both the tentacles and clubs and hides them within its arms before swimming away.

In short, all of the motions and activities of these squids appear to be directed toward giving the impression that their clubs are small, swimming animals, independent from the rest of the squids' bodies.

The researchers speculate that the motion of the clubs may induce smaller squids and shrimp to approach close enough to be captured by G. bonplandi's arms (the researchers observed remnants of small squids and shrimps in the stomachs of the G. bonplandi that they dissected).

Because G. bonplandi's clubs do not glow, they would be invisible in the inky darkness of the deep sea. However, the researchers proposed several other ways that these "swimming" clubs might attract prey.

One possibility is that the moving clubs could disturb glowing microscopic organisms in the surrounding water, causing the water to glow like a ship's wake during a red-tide bloom. The clubs' swimming motions would also create turbulence or vibrations in the water, which could be detected by their prey. Such vibrations might mimic the vibrations used by prey animals to attract mates. Alternatively, they might be similar to the vibrations created by the even smaller animals eaten by G. bonplandi's prey.

Because Hoving and his coauthors have never actually seen this squid capture prey, they still do not know how exactly G. bonplandi feeds on any animals that it attracts using its "swimming" tentacle tips. But their detailed observations provide yet another example of the improbable survival strategies that have evolved in the often food-limited environment of the deep sea.

Video: http://www.youtube.com/watch?v=boV-zXhWTAQ


Story Source:

The above story is based on materials provided by Monterey Bay Aquarium Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. H. J. T. Hoving, L. D. Zeidberg, M. C. Benfield, S. L. Bush, B. H. Robison, M. Vecchione. First in situ observations of the deep-sea squid Grimalditeuthis bonplandi reveal unique use of tentacles. Proceedings of the Royal Society B: Biological Sciences, 2013; 280 (1769): 20131463 DOI: 10.1098/rspb.2013.1463

Cite This Page:

Monterey Bay Aquarium Research Institute. "Deep-sea squid with tentacle tips that 'swim' on their own." ScienceDaily. ScienceDaily, 3 September 2013. <www.sciencedaily.com/releases/2013/09/130903091606.htm>.
Monterey Bay Aquarium Research Institute. (2013, September 3). Deep-sea squid with tentacle tips that 'swim' on their own. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2013/09/130903091606.htm
Monterey Bay Aquarium Research Institute. "Deep-sea squid with tentacle tips that 'swim' on their own." ScienceDaily. www.sciencedaily.com/releases/2013/09/130903091606.htm (accessed October 25, 2014).

Share This



More Plants & Animals News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins