Featured Research

from universities, journals, and other organizations

Deep-ocean carbon sinks: Basic research on dark ocean microorganisms

Date:
September 5, 2013
Source:
University of Iowa
Summary:
Although microbes that live in the so-called "dark ocean"-- below a depth of some 600 feet where light doesn't penetrate -- may not absorb enough carbon to curtail global warming, they do absorb considerable amounts of carbon and merit further study, according to a study.

While most people are familiar with microbes that occur above ground—such as this orange-colored colony surrounding Grand Prismatic Spring at Yellowstone National Park—microbes also occur around hydrothermal vents on the ocean floor, at depths where light cannot penetrate and where they trap carbon using chemical energy instead of sunlight.
Credit: Photo by Jim Peaco, National Park Service

Although microbes that live in the so-called "dark ocean" -- below a depth of some 600 feet where light doesn't penetrate -- may not absorb enough carbon to curtail global warming, they do absorb considerable amounts of carbon and merit further study.

That is one of the findings of a paper published in the International Society of Microbial Ecology (ISME) Journal by Tim Mattes, associate professor of civil and environmental engineering in the University of Iowa College of Engineering, and his colleagues.

Mattes says that while many people are familiar with the concept of trees and grass absorbing carbon from the air, bacteria, and ancient single-celled organisms called "archaea" in the dark ocean hold between 300 million and 1.3 billion tons of carbon.

"A significant amount of carbon fixation occurs in the dark ocean," says Mattes. "What might make this surprising is that carbon fixation is typically linked to organisms using sunlight as the energy source."

Organisms in the dark ocean may not require sunlight to lock up carbon, but they do require an energy source.

"In the dark ocean, carbon fixation can occur with reduced chemical energy sources such as sulfur, methane, and ferrous iron," Mattes says. "The hotspots are hydrothermal vents that generate plumes rich in chemical energy sources that stimulate the growth of microorganisms forming the foundation for deep sea ecosystems."

The hydrothermal vents the team studied are located in a volcanic caldera at Axial Seamount, an active underwater volcano in the Pacific Ocean. The site is located some 300 miles west of Cannon Beach, Ore., and about 1,500 meters beneath the surface. Mattes' colleague, Robert Morris, gathered data and collected samples used in the study during a 2011 cruise sponsored by the U.S. National Science Foundation.

"Using protein-based techniques, we observed that sulfur-oxidizing microorganisms were numerically dominant in this particular hydrothermal vent plume and also converting carbon dioxide to biomass, as suggested by the title of our paper: 'Sulfur oxidizers dominate carbon fixation at a biogeochemical hot spot in the dark ocean.'"

With carbon fixation occurring on a large scale in the dark ocean, one might wonder about the contribution of such activity to offset carbon emissions widely believed to contribute to global warming, but Mattes sets aside any such speculation in favor of further study.

"While it is true that these microbes are incorporating carbon dioxide into their cells in the deep ocean and thus having an impact on the global carbon cycle, there is no evidence to suggest that they could play any role in mitigating global warming," he says.

He adds that the primary value of the investigation is to better understand how microorganisms function in the dark ocean and to increase fundamental knowledge of global biogeochemical cycles.

Mattes conducted this research at the University of Washington School of Oceanography while on developmental leave from the UI.

Mattes' colleagues in the study are: Brook Nunn, Katharine Marshall, Giora Proskurowski, Deborah Kelley, Orest Kawka, and Robert Morris of the University of Washington; David Goodlett of the University of Maryland; and Dennis Hansell of the University of Miami.

The study, published online in July, was funded under grants from the National Science Foundation OCE-1232840 and OCE-0825790 and National Institutes of Health 5P30ES007033-12 and 1S10RR023044.


Story Source:

The above story is based on materials provided by University of Iowa. The original article was written by Gary Galluzzo. Note: Materials may be edited for content and length.


Journal Reference:

  1. Timothy E Mattes, Brook L Nunn, Katharine T Marshall, Giora Proskurowski, Deborah S Kelley, Orest E Kawka, David R Goodlett, Dennis A Hansell, Robert M Morris. Sulfur oxidizers dominate carbon fixation at a biogeochemical hot spot in the dark ocean. The ISME Journal, 2013; DOI: 10.1038/ismej.2013.113

Cite This Page:

University of Iowa. "Deep-ocean carbon sinks: Basic research on dark ocean microorganisms." ScienceDaily. ScienceDaily, 5 September 2013. <www.sciencedaily.com/releases/2013/09/130905134100.htm>.
University of Iowa. (2013, September 5). Deep-ocean carbon sinks: Basic research on dark ocean microorganisms. ScienceDaily. Retrieved April 21, 2014 from www.sciencedaily.com/releases/2013/09/130905134100.htm
University of Iowa. "Deep-ocean carbon sinks: Basic research on dark ocean microorganisms." ScienceDaily. www.sciencedaily.com/releases/2013/09/130905134100.htm (accessed April 21, 2014).

Share This



More Earth & Climate News

Monday, April 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drought Concerns May Hurt Lake Tourism

Drought Concerns May Hurt Lake Tourism

AP (Apr. 18, 2014) Operators of recreational businesses on western reservoirs worry that ongoing drought concerns will keep boaters and other visitors from flocking to the popular summer attractions. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Ark. Man Finds 6-Carat Diamond At State Park

Ark. Man Finds 6-Carat Diamond At State Park

Newsy (Apr. 18, 2014) An Arkansas man has found a nearly 6.2-carat diamond, which he dubbed "The Limitless Diamond," at the Crater of Diamonds State Park. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins