Featured Research

from universities, journals, and other organizations

Disease-causing genes spread easily in emerging lethal fungus infection

Date:
September 5, 2013
Source:
Wellcome Trust
Summary:
A rare, emerging fungal disease that is spreading throughout Canada and Northwestern USA can easily pass its deadly genes to related fungal strains within the species, but less readily to more distant relatives.

Infectious spores of Cryptococcus gatti.
Credit: Edmond Byrnes and Joseph Heitman, Duke University

A rare, emerging fungal disease that is spreading throughout Canada and Northwestern USA can easily pass its deadly genes to related fungal strains within the species but less readily to more distant relatives, according to a study part-funded by the Wellcome Trust.

Related Articles


The findings will help to understand the origins of infectious outbreaks and predict the likelihood of the disease spreading to other populations and geographical areas.

Cryptococcus gattii is a type of fungus that was previously only found in warmer climates throughout the tropics. However, since 1999 outbreaks of highly virulent strains of the fungus have been reported in the cooler climes of Canada and Northwestern USA, causing serious illness in otherwise healthy people and domestic and wild animals and proving fatal in some cases.

To try to understand how likely it is that the disease will spread further, a team of researchers in the US and UK interbred different strains of the fungus to test how easily the characteristics of these more dangerous strains can be transferred to other less harmful strains.

The results show that genes conferring traits that make the fungus more dangerous are easily passed to the offspring when the two parent strains are closely related. When the strains are distantly related to each other, the genes are much less likely to spread.

Professor Robin May from the University of Birmingham, who co-led the study with Dr Joseph Heitman from Duke University, said: "That the fungus can easily pass on the genes that make it more dangerous means that we could potentially see new strains of C. gattii cropping up spontaneously, causing outbreaks of disease in areas that were previously unaffected.

"Although this is still a very rare disease, with only around 400 people having been affected in the last decade, the results of our study show that surveillance efforts will be vital to stop it from spreading."

Part of the reason the 'hypervirulent' strains are so dangerous is that they have the unusual ability to survive inside cells of the infected person's immune system, where they rapidly reproduce.

The findings reveal that these characteristics can be inherited from the parent fungi through the genome and also through genetic material contained within the mitochondria, tiny structures inside the fungal cells. Mitochondrial DNA is normally inherited from only one parent but the team show that this particular strain of fungus can get mitochondrial genes from both parents.

"We were surprised to see that C. gattii could inherit mitochondrial genes from either or even both parents. This may make it easier for the fungus to spontaneously develop disease-causing traits that make it more of a threat," added lead researcher Dr. Kerstin Voelz.

C. gattii is found in the soil and in association with certain trees such as eucalyptus, pine or fir trees. It is transmitted to humans and other animals by inhaling spores of the fungus that are carried in the air. After infecting the lungs, cells of the fungus can travel through the bloodstream to infect other areas of the body, including the brain. The most common symptoms are shortness of breath, coughing, fatigue, fever, and headache.


Story Source:

The above story is based on materials provided by Wellcome Trust. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kerstin Voelz, Hansong Ma, Sujal Phadke, Edmond J. Byrnes, Pinkuan Zhu, Olaf Mueller, Rhys A. Farrer, Daniel A. Henk, Yonathan Lewit, Yen-Ping Hsueh, Matthew C. Fisher, Alexander Idnurm, Joseph Heitman, Robin C. May. Transmission of Hypervirulence Traits via Sexual Reproduction within and between Lineages of the Human Fungal Pathogen Cryptococcus gattii. PLoS Genetics, 2013; 9 (9): e1003771 DOI: 10.1371/journal.pgen.1003771

Cite This Page:

Wellcome Trust. "Disease-causing genes spread easily in emerging lethal fungus infection." ScienceDaily. ScienceDaily, 5 September 2013. <www.sciencedaily.com/releases/2013/09/130905203012.htm>.
Wellcome Trust. (2013, September 5). Disease-causing genes spread easily in emerging lethal fungus infection. ScienceDaily. Retrieved November 21, 2014 from www.sciencedaily.com/releases/2013/09/130905203012.htm
Wellcome Trust. "Disease-causing genes spread easily in emerging lethal fungus infection." ScienceDaily. www.sciencedaily.com/releases/2013/09/130905203012.htm (accessed November 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, November 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Baby Okapi Born at Houston Zoo

Raw: Baby Okapi Born at Houston Zoo

AP (Nov. 20, 2014) The Houston Zoo released video of a male baby okapi. Okapis, also known as the "forest giraffe", are native to the Democratic Republic of the Congo in Central Africa. Video is mute from source. (Nov. 20) Video provided by AP
Powered by NewsLook.com
Your Complicated Job Might Keep Your Brain Young

Your Complicated Job Might Keep Your Brain Young

Newsy (Nov. 20, 2014) Researchers at the University of Edinburgh found the more complex your job is, the sharper your cognitive skills will likely be as you age. Video provided by Newsy
Powered by NewsLook.com
Mysterious Glow Worms Found in the Amazon

Mysterious Glow Worms Found in the Amazon

Buzz60 (Nov. 20, 2014) Wildlife photographer Jeff Cremer teamed up with entomologist Aaron Pomerantz and others to investigate a predatory glow worm found in the Amazon. Patrick Jones (@Patrick_E_Jones) explains. Video provided by Buzz60
Powered by NewsLook.com
Raw: Huge Snow Covers Buffalo Streets

Raw: Huge Snow Covers Buffalo Streets

AP (Nov. 20, 2014) A new blast of lake-effect snow roared through western New York with thunder and lightning on Thursday, raising to nearly 6 feet the three-day total in parts of the Buffalo area. (Nov. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins