Featured Research

from universities, journals, and other organizations

Early mammal varieties declined as evolution of flowering plants radiated

Date:
October 2, 2013
Source:
Indiana University
Summary:
The dramatic explosion of flowering plant species that occurred about 100 million years ago was thought to have been good news for evolving mammals. But new research suggests that wasn't necessarily the case.

This figure shows a decline in mammal variety by dental functional type in the mid-Cretaceous. Note the increase, however, in mammals with tribosphenic molars, small insectivores that gave rise to modern-day mammals.
Credit: David Grossnickle

The dramatic explosion of flowering plant species that occurred about 100 million years ago was thought to have been good news for evolving mammals, providing them with new options for food and habitat. But research by geologists at Indiana University Bloomington suggests that wasn't necessarily the case.

Related Articles


In a study published in the journal Proceedings of the Royal Society B, David Grossnickle and P. David Polly present evidence that mammal varieties declined during the great angiosperm radiation of the mid-Cretaceous, a time when a great diversity of flowering plants appears in the fossil record.

Grossnickle, a former high school biology teacher, conducted the research for a master's degree in geology from IU; he is now a doctoral student at the University of Chicago. Polly is a professor in the Department of Geological Sciences in the College of Arts and Sciences.

The paper, "Mammal disparity decreases during the Cretaceous angiosperm radiation," available online, describes unexpected findings from a painstaking analysis of mammal jaws and teeth.

Fossil discoveries in the past 30 years have provided new insights about mammalian evolution and made the current study possible. It is thought to be the first paleontological examination of its kind, tracking morphological, taxonomic and dietary changes of mammals during the mid-Cretaceous.

"At the middle of the Cretaceous, a time when the early angiosperms are radiating, we find a surprising decrease in the diversity of mammals," Grossnickle said. "It's not until the end of the Cretaceous, close to the time of the extinction of the dinosaurs, that we actually see a rebound in mammalian diversity and the first appearance of purely herbivorous mammals."

Previous literature suggested the spread of angiosperms, along with the evolution of pollinating insects, may have spurred an increase in the diversity of mammals. The idea made sense: The radiation would likely have resulted in more food sources from seeds, fruits, leaves and insects.

Grossnickle and Polly found, however, that while the number of mammal species may have increased, their variety decreased. Most of the mammals that survived were small, insect-eating animals.

"From the fossil record, the time of the angiosperm radiation doesn't look like a very good time for mammals," Grossnickle said. "There's not as much variation as there was before and after that time, and there's not as much as you would expect at a time when angiosperms were radiating."

The study examined mammalian evolution associated with changing diets through a detailed analysis of the size and shape of jaws from the fossil record. The researchers also used dental function and molar size to chart changes in mammal morphology.

They found that one group of mammals, while mostly small and morphologically similar, did well in the mid-Cretaceous. Those were early therians, which gave rise to most modern mammals, including humans.

"Without the ecological changes brought about by the Cretaceous radiation of flowering plants," Grossnickle said, "the world would be a very different place and may not have triggered crucial adaptations of our clever primate ancestors."


Story Source:

The above story is based on materials provided by Indiana University. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. M. Grossnickle, P. D. Polly. Mammal disparity decreases during the Cretaceous angiosperm radiation. Proceedings of the Royal Society B: Biological Sciences, 2013; 280 (1771): 20132110 DOI: 10.1098/rspb.2013.2110

Cite This Page:

Indiana University. "Early mammal varieties declined as evolution of flowering plants radiated." ScienceDaily. ScienceDaily, 2 October 2013. <www.sciencedaily.com/releases/2013/10/131002102924.htm>.
Indiana University. (2013, October 2). Early mammal varieties declined as evolution of flowering plants radiated. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2013/10/131002102924.htm
Indiana University. "Early mammal varieties declined as evolution of flowering plants radiated." ScienceDaily. www.sciencedaily.com/releases/2013/10/131002102924.htm (accessed October 25, 2014).

Share This



More Fossils & Ruins News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Fossil Treasures at Risk in Morocco Desert Town

Fossil Treasures at Risk in Morocco Desert Town

AFP (Oct. 23, 2014) Hundreds of archeological jewels in and around the town of 30,000 people prompt geologists and archeologists to call the Erfoud area "the largest open air fossil museum in the world". Duration: 02:17 Video provided by AFP
Powered by NewsLook.com
Oldest Bone Ever Sequenced Shows Human/Neanderthal Mating

Oldest Bone Ever Sequenced Shows Human/Neanderthal Mating

Newsy (Oct. 23, 2014) A 45,000-year-old thighbone is showing when humans and neanderthals may have first interbred and revealing details about our origins. Video provided by Newsy
Powered by NewsLook.com
Weird-Looking Dinosaur Solves 50-Year-Old Mystery

Weird-Looking Dinosaur Solves 50-Year-Old Mystery

Newsy (Oct. 23, 2014) You've probably seen some weird-looking dinosaurs, but have you ever seen one this weird? It's worth a look. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins