Featured Research

from universities, journals, and other organizations

Naked jets of water make a better pollutant detector

Date:
October 3, 2013
Source:
The Optical Society
Summary:
When you shine UV through water polluted with certain organic chemicals and bacteria, the contaminants measurably absorb the UV light and then re-emit it as visible light. Many of today's more advanced devices for testing water are built to make use of this fluorescent property of pollutants; but the walls of the channels through which the water travels in these devices can produce background noise that makes it difficult to get a clear reading.

When you shine ultraviolet light (UV) through water polluted with certain organic chemicals and bacteria, the contaminants measurably absorb the UV light and then re-emit it as visible light. Many of today's more advanced devices for testing water are built to make use of this fluorescent property of pollutants; but the walls of the channels through which the water travels in these devices can produce background noise that makes it difficult to get a clear reading.

Reported today, in The Optical Society's (OSA) open-access journal, Optics Express, researchers in Italy have developed a pollutant detector that forgoes the channels in favor of a narrow stream of water unconfined by tubes or pipes. The naked jet of water doubles as both the sample and the collection equipment, providing a simple, cheap, and portable new tool to analyze liquids developed in the framework of the research project ACQUASENSE.

"The innovative aspect of this sensor is related to the simple and tricky way used to collect the light -- a water stream," says Gianluca Persichetti of the Institute for Electromagnetic Sensing of the Environment (IREA), National Research Council, (CNR) in Italy.

Typical microfluidic detectors rely on narrow channels to hold and control the water samples with their fluorescing organic compounds. But the laser light that illuminates bacteria and chemicals in the water also shines on the channel walls, where it scatters and obscures the distinction between the fluorescing contaminants and their background. Wear and tear on the walls also weakens the reliability of measurements made using these instruments.

To get around the problems caused by the channel walls, Persichetti and his colleagues of the group led by Romeo Bernini decided simply to do away with them. In their new technique, they pump the water sample through a nozzle at 1.4 meters per second, producing a narrow stream that is less than a millimeter in diameter. Then they shine a UV laser onto the exposed jet of water. The fluorescent light produced by the pollutants and bacteria bounces around and is trapped inside the jet, which acts as a waveguide, a tunnel that channels light through the stream.

The laser light itself is a source of a background noise that can cloud the signal, Perisichetti said, so the researchers minimize the amount of laser light that gets trapped in the jet by firing the laser beam at an angle perpendicular to the stream of water.

After traveling a total distance of 16 millimeters -- not much more than the width of your finger -- the jet enters a small pipe that contains an optical fiber, which collects the fluorescent light signals. The water is pumped back to recirculate through the nozzle, allowing the instrument to analyze even a small sample for an extended period of time.

The researchers tested their device with varying amounts of some of the main pollutants of ground water -- soil contaminants such as benzene, toluene, and xylene (together called BTX), and polycyclic aromatic hydrocarbons (PAH), which are hazardous, carcinogenic chemicals found in tar and petroleum. Persichetti and his colleagues found that the device was extremely sensitive: it could detect pollutant levels even lower than those allowed by the Environmental Protection Agency (EPA). The instrument could also sense Bacillus subtillus, a harmless bacterium similar to the one that causes anthrax.

The current device is fitted with an instrument called a spectrophotometer, which can measure the optical signatures of specific chemicals. To make the device even cheaper and smaller for future commercialization in water-safety testing, the researchers plan to replace the laser with a light-emitting diode (LED) and to replace the spectrophotometer with a simpler and less expensive set-up that would include a filter to remove unwanted background light, and a photodiode, which converts light into electricity, to detect the signal. In addition to water-safety applications, Persichetti says, future instruments can be designed with more sophisticated sensors to distinguish between a variety of chemicals or bacterial cells for biological and medical research.


Story Source:

The above story is based on materials provided by The Optical Society. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gianluca Persichetti, Genni Gesta, Romeo Bernini. High sensitivity UV fluorescence spectroscopy based on an optofluidic jet waveguide. Optics Express, 2013; 21 (20): 24219 DOI: 10.1364/OE.21.024219

Cite This Page:

The Optical Society. "Naked jets of water make a better pollutant detector." ScienceDaily. ScienceDaily, 3 October 2013. <www.sciencedaily.com/releases/2013/10/131003162942.htm>.
The Optical Society. (2013, October 3). Naked jets of water make a better pollutant detector. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2013/10/131003162942.htm
The Optical Society. "Naked jets of water make a better pollutant detector." ScienceDaily. www.sciencedaily.com/releases/2013/10/131003162942.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Industry's Optimism Shines At New York Auto Show

Industry's Optimism Shines At New York Auto Show

Newsy (Apr. 16, 2014) After seeing auto sales grow last month, there's plenty for the industry to celebrate as it rolls out its newest designs. Video provided by Newsy
Powered by NewsLook.com
Ford Mustang Fetes Its 50th Atop Empire State Building

Ford Mustang Fetes Its 50th Atop Empire State Building

AFP (Apr. 16, 2014) Ford celebrated the 50th birthday of its beloved Mustang by displaying a new model of the convertible on top of the Empire State Building in New York. Duration: 00:28 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins