Featured Research

from universities, journals, and other organizations

Progress toward treatment for dangerous allergies

Date:
October 9, 2013
Source:
University of Notre Dame
Summary:
New research shows that a group of scientists has made concrete progress toward the development of the first-ever inhibitory therapeutic for Type I hypersensitive allergic reactions.

Peanuts, a common allergen.
Credit: pilotl39 / Fotolia

New research published in the journal Nature Chemical Biology shows that a group of scientists, led by faculty at the University of Notre Dame, has made concrete progress toward the development of the first-ever inhibitory therapeutic for Type I hypersensitive allergic reactions.

Related Articles


"Our allergy inhibition project is innovative and significant because we brought a novel molecular design approach to selectively inhibit mast cell degranulation -- the key event in triggering a food allergic response -- which has the potential to improve the quality of life for affected patients," said Basar Bilgicer, assistant professor of chemical and biomolecular engineering at Notre Dame and an investigator in the University's Advanced Diagnostics & Therapeutics initiative.

Allergic reactions are caused when a person's immune system reacts to normally harmless substances in the environment. An allergic reaction can be the source of a simple itch or sneezing; however, Type I hypersensitive allergic reactions can go as far as a life-threatening anaphylactic shock. Mast cells, which are a type of white blood cell, function to protect the body from harmful pathogens such as parasites. In Type I hypersensitive allergic conditions, mast cells show a response to otherwise harmless substances (allergens) and result in severe, even potentially lethal, symptoms. The most common examples to Type I hypersensitivity are food allergies, such as to peanuts or shellfish, which affect 15 million Americans and approximately 8 percent of children.

Through the new research, Bilgicer and his group designed a special molecule, called a heterobivalent inhibitor (HBI), which when introduced into a person's bloodstream can, in essence, out-compete allergens like egg or peanut proteins in their race to attach to mast cell receptors.

"Unlike current treatments, such as epinephrine, which help a body endure through an allergic reaction, our HBIs, if introduced into the bloodstream, would actually stop further progression of the allergic reaction from taking place," said Bilgicer.

"We are figuring out the optimum binding sites on the mast cell receptors to attach to, in order to prevent allergens from interacting with them and to prevent the allergic reaction before it even starts in the first place."

The team has demonstrated the effectiveness of their inhibitor molecule on allergic reaction using animal models of allergy. Their next set of targets are a variety of allergens that affect humans -- including peanuts, penicillin and dust mites -- and they will design HBIs that would be successful inhibitors for each.


Story Source:

The above story is based on materials provided by University of Notre Dame. Note: Materials may be edited for content and length.


Journal Reference:

  1. Michael W Handlogten, Tanyel Kiziltepe, Ana P Serezani, Mark H Kaplan, Basar Bilgicer. Inhibition of weak-affinity epitope-IgE interactions prevents mast cell degranulation. Nature Chemical Biology, 2013; DOI: 10.1038/nchembio.1358

Cite This Page:

University of Notre Dame. "Progress toward treatment for dangerous allergies." ScienceDaily. ScienceDaily, 9 October 2013. <www.sciencedaily.com/releases/2013/10/131009125955.htm>.
University of Notre Dame. (2013, October 9). Progress toward treatment for dangerous allergies. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2013/10/131009125955.htm
University of Notre Dame. "Progress toward treatment for dangerous allergies." ScienceDaily. www.sciencedaily.com/releases/2013/10/131009125955.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins