Featured Research

from universities, journals, and other organizations

Nanoscale 'tsunami' helps locusts tune in

Date:
November 6, 2013
Source:
University of Bristol
Summary:
The remarkable mechanism by which the tiny ears of locusts can hear and distinguish between different tones has been discovered by researchers. Understanding how the nanoscale features of the insect eardrum mechanically process sound could open up practical possibilities for the fabrication of embedded signal processing in extremely small microphones.

A locust with ion beam milling showing a section of eardrum.
Credit: Bristol University

The remarkable mechanism by which the tiny ears of locusts can hear and distinguish between different tones has been discovered by researchers from the University of Bristol.

Understanding how the nanoscale features of the insect eardrum mechanically process sound could open up practical possibilities for the fabrication of embedded signal processing in extremely small microphones.

Unlike a microphone membrane, the eardrum of the locust is a complicated structure which is used to process the information contained in an incoming sound. In order to survive, the locust needs to be able to distinguish between the friendly sounds of fellow locusts in its swarm and the sounds of a hunting bat approaching. These sounds differ in their tonal composition: locust sounds are raspy and noisy while bat echolocation calls have distinctly higher frequencies.

Using a set of laser beams shining on the locust, Dr Rob Malkin of Bristol's School of Biological Sciences and colleagues were able to observe the effects of incoming sound waves on the eardrum. They found that the locust eardrum behaved in a most unusual way, quite unlike a microphone membrane or the eardrums of other animals.

The researchers first confirmed a result the Bristol team observed a few years ago, namely that the eardrum generates concentric waves of vibrations that shoal in a tsunami-like fashion as they travel from one side of the membrane to the other. The new, detailed analysis shows that eardrum waves caused by low frequency sounds travel completely across the membrane, where low-frequency-sensitive nerve cells attach to the membrane. Remarkably, high frequency waves travel only half that far, and stop at the attachment point of high frequency neurons.

Using data and computer modelling, Dr Malkin, an aerospace engineer working in bio-inspired sensor research, quantified this mechanical behaviour. He said: "It rapidly became evident that the distribution of the vibrational energy was odd… quite unlike what normal materials do when waves travel through them."

The researchers then discovered a surprising effect: the energy density contained in the travelling wave was amplified as the wave travelled across the eardrum. The team measured that, as the high frequency waves converge onto one point, the amplification can be as high as 56,000 times. This energy localisation is remarkable because it is purely mechanical; at this stage only cleverly arranged material within the eardrum membrane does the job.

To understand how this effect is possible in such a small structure, the team used a combination of mathematical modelling with nanoscale measurements and structural visualisation. They employed a focussed ion beam at Bristol's Interface Analysis Centre to gain knowledge of the structural features of the locust's eardrum then fed this information into analytical models in order to unveil the contributions of different eardrum attributes. Thus, they established that a particular combination of attributes generates the phenomenon; geometry, tension, stiffness and mass distribution all turn the locust eardrum into a little mechanical processing device.

Professor Daniel Robert, who led the research team and is funded by the Royal Society, said: "Other animals, including mammals such as ourselves, analyse tonal differences using very refined mechanisms in the cochlea. Hearing in these animals is a three-step process, from capturing sound with an eardrum to amplifying vibrations through middle ear bones and then transmitting them to the cochlear frequency analyser. Locusts do not enjoy the luxury of such a complicated, large and biologically expensive to build apparatus. Instead their ears evolved to be much simpler with sound capture, local amplification and frequency analysis all taking place within one structure."

Dr Malkin added: "This is a feat of miniaturisation and simplification; we now need to make a similar sensor and test it."


Story Source:

The above story is based on materials provided by University of Bristol. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. Malkin, T. R. McDonagh, N. Mhatre, T. S. Scott, D. Robert. Energy localization and frequency analysis in the locust ear. Journal of The Royal Society Interface, 2013; 11 (90): 20130857 DOI: 10.1098/rsif.2013.0857

Cite This Page:

University of Bristol. "Nanoscale 'tsunami' helps locusts tune in." ScienceDaily. ScienceDaily, 6 November 2013. <www.sciencedaily.com/releases/2013/11/131106073909.htm>.
University of Bristol. (2013, November 6). Nanoscale 'tsunami' helps locusts tune in. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2013/11/131106073909.htm
University of Bristol. "Nanoscale 'tsunami' helps locusts tune in." ScienceDaily. www.sciencedaily.com/releases/2013/11/131106073909.htm (accessed July 24, 2014).

Share This




More Plants & Animals News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Dogs Appear To Become Jealous Of Owners' Attention

Dogs Appear To Become Jealous Of Owners' Attention

Newsy (July 23, 2014) A U.C. San Diego researcher says jealousy isn't just a human trait, and dogs aren't the best at sharing the attention of humans with other dogs. Video provided by Newsy
Powered by NewsLook.com
Professor Creates Site Revealing Where People's Cats Live

Professor Creates Site Revealing Where People's Cats Live

Newsy (July 23, 2014) ​It's called I Know Where Your Cat Lives, and you can keep hitting the "Random Cat" button to find more real cats all over the world. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins