Featured Research

from universities, journals, and other organizations

Two for one in solar power: New process could revolutionize solar energy harvesting

Date:
November 17, 2013
Source:
University of Cambridge
Summary:
A process that could revolutionize solar energy harvesting has been efficiently demonstrated in solution for the first time. Researchers have investigated the process in which the initial electronic excitation can split into a pair of half-energy excitations. This can happen in certain organic molecules when the quantum mechanical effect of electron spin sets the initial spin 'singlet' state to be double the energy of the alternative spin 'triplet' arrangement.

Left: This shows laser set-up in the lab in Cambridge. Right: This is the Celestia sun.
Credit: Left: Sebastian Albert-Seifried / Right: Rights free

Solar cells offer the opportunity to harvest abundant, renewable energy. Although the highest energy light occurs in the ultraviolet and visible spectrum, most solar energy is in the infrared. There is a trade-off in harvesting this light, so that solar cells are efficient in the infrared but waste much of the energy available from the more energetic photons in the visible part of the spectrum.

When a photon is absorbed it creates a single electronic excitation that is then separated into an electron and a positively charged hole, irrespective of the light energy. One way to improve efficiency is to split energy available from visible photons into two, which leads to a doubling of the current in the solar cell.

Researchers in Cambridge and Mons have investigated the process in which the initial electronic excitation can split into a pair of half-energy excitations. This can happen in certain organic molecules when the quantum mechanical effect of electron spin sets the initial spin 'singlet' state to be double the energy of the alternative spin 'triplet' arrangement.

The study, published today in the journal Nature Chemistry, shows that this process of singlet fission to pairs of triplets depends very sensitively on the interactions between molecules. By studying this process when the molecules are in solution it is possible to control when this process is switched on.

When the material is very dilute, the distance between molecules is large and singlet fission does not occur. When the solution is concentrated, collisions between molecules become more frequent. The researchers find that the fission process happens as soon as just two of these molecules are in contact, and remarkably, that singlet fission is then completely efficient -- so that every photon produces two triplets.

This fundamental study provides new insights into the process of singlet fission and demonstrates that the use of singlet fission is a very promising route to improved solar cells. Chemists will be able to use the results to make new materials, say the team from Cambridge's Cavendish Laboratory, who are currently working on ways to use these solutions in devices.

"We began by going back to fundamentals; looking at the solar energy challenge from a blue skies perspective," said Dr Brian Walker, a research fellow in the Cavendish Lab's Optoelectronics group, who led the study.

"Singlet fission offers a route to boosting solar cell efficiency using low-cost materials. We are only beginning to understand how this process works, and as we learn more we expect improvements in the technology to follow."

The team used a combination of laser experiments -- which measure timings with extreme accuracy -- with chemical methods used to study reaction mechanisms. This dual approach allowed the researchers to slow down fission and observe a key intermediate step never before seen.

"Very few other groups in the world have laser apparatus as versatile as ours in Cambridge," added Andrew Musser, a researcher who collaborated in the study. "This enabled us to get a step closer to working out exactly how singlet fission occurs."


Story Source:

The above story is based on materials provided by University of Cambridge. The original story is licensed under a Creative Commons Licence. Note: Materials may be edited for content and length.


Journal Reference:

  1. Brian J. Walker, Andrew J. Musser, David Beljonne, Richard H. Friend. Singlet exciton fission in solution. Nature Chemistry, 2013; DOI: 10.1038/nchem.1801

Cite This Page:

University of Cambridge. "Two for one in solar power: New process could revolutionize solar energy harvesting." ScienceDaily. ScienceDaily, 17 November 2013. <www.sciencedaily.com/releases/2013/11/131117155727.htm>.
University of Cambridge. (2013, November 17). Two for one in solar power: New process could revolutionize solar energy harvesting. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2013/11/131117155727.htm
University of Cambridge. "Two for one in solar power: New process could revolutionize solar energy harvesting." ScienceDaily. www.sciencedaily.com/releases/2013/11/131117155727.htm (accessed July 25, 2014).

Share This




More Earth & Climate News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Bill Gates: Health, Agriculture Key to Africa's Development

Bill Gates: Health, Agriculture Key to Africa's Development

AFP (July 24, 2014) Health and agriculture development are key if African countries are to overcome poverty and grow, US software billionaire Bill Gates said Thursday, as he received an honourary degree in Ethiopia. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Higgins Breaks Record at Mt. Washington

Higgins Breaks Record at Mt. Washington

Driving Sports (July 24, 2014) Subaru Rally Team USA drivers David Higgins and Travis Pastrana face off against a global contingent of racers at the annual Mt. Washington Hillclimb in New Hampshire. Includes exclusive in-car footage from Higgins' record attempt. Video provided by Driving Sports
Powered by NewsLook.com
Storm Kills Three, Injures 20 at Virginia Campground

Storm Kills Three, Injures 20 at Virginia Campground

Reuters - US Online Video (July 24, 2014) A likely tornado tears through an eastern Virginia campground, killing three and injuring at least 20. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins