Featured Research

from universities, journals, and other organizations

New approach to identify possible ecological effects of releasing genetically engineered insects

Date:
November 18, 2013
Source:
University of Minnesota
Summary:
Researchers have developed a new approach for identifying potential environmental effects of deliberate releases of genetically engineered insects.

University of Minnesota researchers have developed a new approach for identifying potential environmental effects of deliberate releases of genetically engineered (GE) insects.

The researchers outline their approach in a paper in the journal Ecology and Evolution. The authors include professor of entomology David Andow and Aaron David, Joe Kaser, Amy Morey and Alex Roth -- four graduate students who received NSF Integrative Graduate Education and Research Traineeships (IGERT) -- the National Science Foundation's flagship interdisciplinary training program educating U.S. Ph.D. scientists and engineers.

GE insects hold great promise for significantly changing pest management and fighting insect borne human diseases throughout the world. Before releasing GE insects, scientists, governments and industry must examine the possible ecological effects GE insects could have by doing ecological risk assessments (ERA). University researchers' new approach provides improved guidance for such assessments.

"When new technology is developed, you want to make sure it's safe," says Morey, who is a doctoral student in the Department of Entomology. "You want to know what could happen when you release these novel organisms into the environment."

Because GE insects are such a new technology, there really isn't a standard way of evaluating that yet, she says.

"Our project is trying to get it a little bit further into a standardization -- a framework for how do you go about systematically evaluating a new technology so you're looking at all the sorts of different interactions that could possibly happen," Morey says.

In the paper, the researchers focus on all potential ecological effects whether an effect is adverse or beneficial, says Kaser, who is a doctoral student in the Department of Entomology. They apply their own approach to the Anopheles gambiae mosquito -- a malaria vector being engineered to suppress the wild mosquito population, says David, who is a doctoral student in the Department of Ecology, Evolution, and Behavior. They explore possible ecological effects during the transitory phase in the short term and steady state phases of the GE mosquito in the long term, David says.

"The population isn't the same the whole time. You do have these transitory phases where the potential effects could be quite different than the effects during the steady state phase," Kaser says.

Many risk assessments only look at the end result. "Our framework really tries to evaluate the entire range of potential effects," he says.

That more comprehensive look is what sets their approach apart from others.

"We think this is a novel and important contribution because many past risk assessments that were just looking at the final population state were missing a lot of really important effects," says Roth, a doctoral student in the Department of Forest Resources. "And that's where we think our framework can really add to identifying effects that could be important throughout this whole process."

As they worked, the researchers not only developed an approach for identifying potential ecological effects of GE insects, and they also found significant knowledge gaps in mosquito ecology.

"While there's an amazing and impressive amount of research that's been done on mosquitoes, there wasn't a whole lot of information about how they might be important ecologically," Kaser says.

In the paper, they had to broaden their scope of ecological research to infer what could happen.

"The idea is that there isn't much info on what happens when you release a GE organism so we drew upon other literature to get at the answer of what happens when you peturb populations," David says.

As GE insects become more common, the researchers say they hope their framework provides guidance that will improve future risk assessments and ensure the safety of these technologies.


Story Source:

The above story is based on materials provided by University of Minnesota. Note: Materials may be edited for content and length.


Journal Reference:

  1. Aaron S. David, Joe M. Kaser, Amy C. Morey, Alexander M. Roth, David A. Andow. Release of genetically engineered insects: a framework to identify potential ecological effects. Ecology and Evolution, 2013; DOI: 10.1002/ece3.737

Cite This Page:

University of Minnesota. "New approach to identify possible ecological effects of releasing genetically engineered insects." ScienceDaily. ScienceDaily, 18 November 2013. <www.sciencedaily.com/releases/2013/11/131118133039.htm>.
University of Minnesota. (2013, November 18). New approach to identify possible ecological effects of releasing genetically engineered insects. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2013/11/131118133039.htm
University of Minnesota. "New approach to identify possible ecological effects of releasing genetically engineered insects." ScienceDaily. www.sciencedaily.com/releases/2013/11/131118133039.htm (accessed October 20, 2014).

Share This



More Plants & Animals News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins