Featured Research

from universities, journals, and other organizations

'Molecular motors' involved in chromosome transport observed

Date:
November 26, 2013
Source:
Waseda University
Summary:
Researchers have for the first time directly observed the “molecular motor”, called Xkid, that plays a critical role in facilitating the proper alignment of chromosomes during cell division. The study provides invaluable knowledge on the mechanisms of materials transport in biological systems.

Tracks of Xkid movements determined in the spindle.
Credit: Image courtesy of Waseda University

Researchers at Waseda University in Japan have for the first time directly observed the "molecular motor," called Xkid, that plays a critical role in facilitating the proper alignment of chromosomes during cell division. The study provides invaluable knowledge on the mechanisms of materials transport in biological systems.

Related Articles


Researchers at Waseda University in Japan have for the first time directly observed the "molecular motor," called Xkid, that plays a critical role in facilitating the proper alignment of chromosomes during cell division. Their findings are expected to contribute greatly to elucidating the molecular mechanisms of chromosome segregation, a key aspect of the development of certain medical disorders including cancer and birth defects.

Within each cell, Xkid molecules are located inside the spindle apparatus, a structure required for cell division that's composed of a bundle of microtubules. Determining the movements of Xkid in natural spindles is considered the key to understanding the mechanisms of chromosomal segregation during cell division.

While a human body is composed of many different parts such as muscles, internal organs, and a brain, its origin is only a single cell, a fertilized egg, which keeps dividing to form the human being. At every step of the cell division, chromosomes must be precisely segregated without any kind of misplacement between two daughter cells. Chromosomes are the source of all genetic information, and incorrect chromosome segregation can cause various forms of medical disorders including severe illnesses and malignant transformation of tumors.

The Xkid molecular motor is known to play a critical role in facilitating the proper alignment of chromosomes during cell division. Previously, its motor functions have been investigated in vitro using purified Xkid molecules obtained from cell extracts, showing their plus end-directed movement as ensembles of molecules along the microtubules. How such molecular motors behave within intact spindles, however, remained to be characterized. In a cell, Xkid molecules are located within the spindle apparatus, a structure required for cell division. The spindle apparatus is an orderly structure composed of a bundle of numerous microtubules. Elucidating Xkid movements in natural spindles is the key to understanding the mechanisms of chromosome segregation during cell division.

Accordingly, the present study set out to examine the movements of Xkid within an intact spindle.

Techniques developed during the study

We found that Xkid traveled long distances (mean ≈5 m; maximum 17 m) along the oriented bundle of microtubules, moving from one microtubule to another along the way. We also observed Xkid moving mostly in the direction corresponding to the distribution of microtubule polarity, leading to the accumulation of Xkid near the spindle equator. This is consistent with the assembly and alignment of chromosomes near the spindle equator in metaphase.

Our findings are the first molecular-level demonstration of the role of Xkid in directing chromosomes toward the spindle equator. Near the spindle poles, more Xkid molecules moved in the equator mode (toward the spindle equator), whereas near the spindle equator, all modes of motion were seen equally frequently (A). The distributions of polarity and length of microtubules were symmetrical with respect to the spindle equator, and corresponded with the predominant direction of Xkid movements (B). The size of the circles representing Xkid-Qdot (quantum dot) indicates the proportion of direction of movement in each location within the spindle.


Story Source:

The above story is based on materials provided by Waseda University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jun Takagi, Takeshi Itabashi, Kazuya Suzuki, Shin'ichi Ishiwata. Chromosome position at the spindle equator is regulated by chromokinesin and a bipolar microtubule array. Scientific Reports, 2013; 3 DOI: 10.1038/srep02808

Cite This Page:

Waseda University. "'Molecular motors' involved in chromosome transport observed." ScienceDaily. ScienceDaily, 26 November 2013. <www.sciencedaily.com/releases/2013/11/131126202957.htm>.
Waseda University. (2013, November 26). 'Molecular motors' involved in chromosome transport observed. ScienceDaily. Retrieved April 24, 2015 from www.sciencedaily.com/releases/2013/11/131126202957.htm
Waseda University. "'Molecular motors' involved in chromosome transport observed." ScienceDaily. www.sciencedaily.com/releases/2013/11/131126202957.htm (accessed April 24, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, April 24, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dispute Flares Over Controversial Thai Temple Tigers

Dispute Flares Over Controversial Thai Temple Tigers

AFP (Apr. 24, 2015) Thai wildlife officials begin a headcount of nearly 150 tigers kept by monks at a temple which has become the centre of a dispute over the welfare of the animals. Video provided by AFP
Powered by NewsLook.com
College Kegger: University Gets in on Craft Brew

College Kegger: University Gets in on Craft Brew

AP (Apr. 24, 2015) Theres never been a shortage of beer on college campuses. But students at Cal Poly-Pomona are learning how to brew, serving their product to classmates, and hoping to land jobs in craft breweries when they graduate. (April 24) Video provided by AP
Powered by NewsLook.com
Cambodian Butterflies Help Villagers Make a Living

Cambodian Butterflies Help Villagers Make a Living

AFP (Apr. 24, 2015) Cambodia&apos;s Banteay Srey Butterfly Centre is the largest of its kind in Southeast Asia. As well as educating tourists about the creatures, it also offers a source of income to nearby villagers, who are paid to breed local species. Duration: 02:04 Video provided by AFP
Powered by NewsLook.com
3D Food Printing: The Meal of the Future?

3D Food Printing: The Meal of the Future?

AP (Apr. 23, 2015) Developers of 3D food printing hope the culinary technology will revolutionize the way we cook and eat. (April 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins