Featured Research

from universities, journals, and other organizations

Amoeboid swimming: Crawling in a fluid

Date:
December 4, 2013
Source:
CNRS
Summary:
Researchers have developed a particularly simple model that reproduces the swimming mechanism of amoebas. They show that, by changing shape, these single cell organisms propel themselves forward in a viscous fluid at the same speed as when they crawl on a solid substrate. The way microorganisms swim is fundamentally different to that of fish since, at their scale, viscosity effects dominate and make fins totally inefficient.

Cell shape deformations during a swimming cycle.
Credit: © LIPhy, CNRS/UJF Grenoble

Researchers from CNRS, Inserm and Université Joseph Fourier -- Grenoble have developed a particularly simple model that reproduces the swimming mechanism of amoebas. They show that, by changing shape, these single cell organisms propel themselves forward in a viscous fluid at the same speed as when they crawl on a solid substrate.

This work has recently been published in the journal Physical Review Letters.

The way microorganisms swim is fundamentally different to that of fish since, at their scale, viscosity effects dominate and make fins totally inefficient. Various strategies are employed. The majority of such organisms propel themselves forward by beating their flagella or cilia while others, such as amoebas, deform their bodies in the same way as they would for crawling. However the efficiency of this method of propulsion remains poorly understood.

Physicists from the Laboratoire Interdisciplinaire de Physique (LIPhy, CNRS/Université Joseph Fourier Grenoble), Oslo University and the Institut Albert Bonniot (Inserm/Université Joseph Fourier -- Grenoble) have elucidated the key elements of this method of locomotion by analyzing a simplified theoretical model. They determined the necessary morphological deformations and the speed of propulsion and showed that incompressibility of the cell membrane is essential.

To conduct this study, the researchers modeled the cell using an inextensible fluid membrane (in other words, able to deform while maintaining its membrane area) containing a viscous fluid and located within a viscous fluid. Surface deformations in this model are uniquely due to forces perpendicular to the surface of the membrane. Among all the possible deformations, the physicists favored those that maintain symmetry of revolution around the axis of movement. Cell deformations induce stresses in the external fluid, which, in return, exerts a force on the cell. To simulate a swimming motion, the researchers considered elementary movements during which the forces exerted on the surface remain constant. These forces alter the shape of the cell and calculations show that motion depends solely on these shapes and not on the speed of movement.

Swimming is thus uniquely determined by the succession of shapes adopted by the cell and the distance covered only depends on the geometry of the surfaces. The model described reproduces certain swimming cycles observed in nature. It will certainly improve our knowledge of cell mobility and make it possible to envisage novel types of artificial micro-swimmers.


Story Source:

The above story is based on materials provided by CNRS. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alexander Farutin, Salima Rafaï, Dag Kristian Dysthe, Alain Duperray, Philippe Peyla, Chaouqi Misbah. Amoeboid Swimming: A Generic Self-Propulsion of Cells in Fluids by Means of Membrane Deformations. Physical Review Letters, 2013; 111 (22) DOI: 10.1103/PhysRevLett.111.228102

Cite This Page:

CNRS. "Amoeboid swimming: Crawling in a fluid." ScienceDaily. ScienceDaily, 4 December 2013. <www.sciencedaily.com/releases/2013/12/131204090954.htm>.
CNRS. (2013, December 4). Amoeboid swimming: Crawling in a fluid. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2013/12/131204090954.htm
CNRS. "Amoeboid swimming: Crawling in a fluid." ScienceDaily. www.sciencedaily.com/releases/2013/12/131204090954.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) — Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins