Featured Research

from universities, journals, and other organizations

Gene promotes one in a hundred of tumors: Gene discovered to play a part in one per cent of all cancers

Date:
December 8, 2013
Source:
Wellcome Trust Sanger Institute
Summary:
Researchers have identified a gene that drives the development of tumors in over one per cent of all cancer patients. This is the first time that the gene CUX1 has been broadly linked to cancer development.

Researchers have identified a gene that drives the development of tumours in over one per cent of all cancer patients. This is the first time that the gene CUX1 has been broadly linked to cancer development.

Related Articles


The team discovered that, when CUX1 is deactivated, a biological pathway is activated that increases tumour growth. Drugs that inhibit the biological pathway are currently being used in the clinic and are in development thus highlighting a potential new targeted therapy for patients with this type of cancer-causing mutation.

Around 300,000 people in the UK each year are diagnosed with cancer, and for more than 3,000 of these patients, an inactive CUX1 gene may be an underlying factor for their disease.

"Our research is a prime example of how understanding the genetic code of cancers can drive the search for targeted cancer therapies that work more effectively and efficiently, says Dr David Adams, lead author from the Wellcome Trust Sanger Institute. "This could improve the lives of thousands of people suffering from cancer."

The team used genetic data from over 7,600 cancer patients, collected and sequenced by the International Cancer Genome Constortium (ICGC) and other groups. They found that in around one per cent of the cancer genomes studied, mutations deactivated CUX1, an event associated with tumour growth.

CUX1 is mutated at a relatively low frequency, but across many different types of cancer. Because previous studies focused on genes that are mutated at a high rate in one cancer type to find cancer drivers, CUX1 was missed as a driver of cancer.

"Our work harnesses the power of combining large-scale cancer genomics with experimental genetics," says Dr Chi Wong, first author from the Wellcome Trust Sanger Institute and practising Haematologist at Addenbrooke's Hospital. "CUX1 defects are particularly common in myeloid blood cancers, either through mutation or acquired loss of chromosome 7q. As these patients have a dismal prognosis currently, novel targeted therapies are urgently needed."

"Data collected from large consortia such the ICGC, provides us with a new and broader way to identify genes that can underlie the development of cancers," says Professor David Tuveson from Cold Spring Harbor Laboratory. "We can now look at cancers as groups of diseases according to their tissues of origin and collectively examine and compare their genomes.

The team silenced CUX1 in cultured cells to understand how inactivating it might lead to the development of tumours. They found that when CUX1 is deactivated, it had a knock-on effect on a biological inhibitor, PIK3IP1, reducing its inhibitory effects. This mobilises an enzyme responsible for cell growth, phosphoinositide 3-kinase (PI3K), increasing the rate of tumour progression.

The team has already identified several dozen other genes that when mutated at a low frequency could promote cancer development. They plan to silence these genes in mice to fully understand how their inactivation may lead to cancer development and the mechanisms by which this occurs.

"Drugs that inhibit PI3K signalling are currently undergoing clinical trial," says Professor Paul Workman, Deputy Chief Executive and Head of Cancer Therapeutics at The Institute of Cancer Research, London. "This discovery will help us to target these drugs to a new group of patients who will benefit from them and could have a dramatic effect on the lives of many cancer sufferers."


Story Source:

The above story is based on materials provided by Wellcome Trust Sanger Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Chi C Wong, Inigo Martincorena, Alistair G Rust, Mamunur Rashid, Constantine Alifrangis, Ludmil B Alexandrov, Jessamy C Tiffen, Christina Kober, Anthony R Green, Charles E Massie, Jyoti Nangalia, Stella Lempidaki, Hartmut Dφhner, Konstanze Dφhner, Sarah J Bray, Ultan McDermott, Elli Papaemmanuil, Peter J Campbell, David J Adams. Inactivating CUX1 mutations promote tumorigenesis. Nature Genetics, 2013; DOI: 10.1038/ng.2846

Cite This Page:

Wellcome Trust Sanger Institute. "Gene promotes one in a hundred of tumors: Gene discovered to play a part in one per cent of all cancers." ScienceDaily. ScienceDaily, 8 December 2013. <www.sciencedaily.com/releases/2013/12/131208133547.htm>.
Wellcome Trust Sanger Institute. (2013, December 8). Gene promotes one in a hundred of tumors: Gene discovered to play a part in one per cent of all cancers. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2013/12/131208133547.htm
Wellcome Trust Sanger Institute. "Gene promotes one in a hundred of tumors: Gene discovered to play a part in one per cent of all cancers." ScienceDaily. www.sciencedaily.com/releases/2013/12/131208133547.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) — It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) — More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) — The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins