Featured Research

from universities, journals, and other organizations

Scientists studying mitochondrial calcium handling yield new disease targets

Date:
December 12, 2013
Source:
Temple University Health System
Summary:
When things go wrong, cells turn to built-in safety mechanisms for survival. One of those mechanisms involves calcium uptake by mitochondria, the energy-producing powerhouses of cells. Long a mystery, new research shows exactly how mitochondria handle damaging excess calcium from the intracellular environment, and how problems with calcium regulation can lead to vascular damage.

When things go wrong, cells turn to built-in safety mechanisms for survival. One of those mechanisms involves calcium uptake by mitochondria, the energy-producing powerhouses of cells. Long a mystery, new research by scientists at the Temple University School of Medicine (TUSM) Center for Translational Research shows exactly how mitochondria handle damaging excess calcium from the intracellular environment, and how problems with calcium regulation can lead to vascular damage.

Related Articles


"Mitochondrial calcium regulation is essential for cell survival," explained senior investigator Muniswamy Madesh, PhD, Assistant Professor in the Center for Translational Research and the Department of Biochemistry at TUSM. "But the calcium uptake mechanism of mitochondria has been unknown."

In the late 1970s, researchers discovered a mitochondrial calcium influx "set point," a point at which calcium levels become high enough in the cytoplasm (intracellular fluid) to trigger calcium uptake into mitochondria. The set point was determined to be about 3 μM. Dr. Madesh and colleagues previously discovered that below the set point, a protein now known as MICU1 works to suppress calcium influx.

Dr. Madesh's new paper, which appears in the journal Cell Reports, is the result of a concentrated effort to identify and describe specific interactions of MICU1. His team began by establishing a novel protein flux dynamics assay, which allowed the researchers to see where MICU1 interactions take place within mitochondria. They then introduced mutations into different regions of the MICU1 protein and investigated how the mutations affected interactions that regulate mitochondrial calcium influx.

In their protein flux experiments in cells, the team discovered that MICU1 is located in the interior region of the mitochondrion. They also identified the specific regions of MICU1 that determine binding with the uniporter that transports calcium into the mitochondrion.

To characterize the physiological relevance of MICU1, the researchers conducted experiments in mice in which MICU1 was silenced. They found that reduced MICU1 activity resulted in prolonged calcium uptake, chronic oxidative stress, and vascular dysfunction. It also diminished the ability of endothelial cells, which form the inner lining of blood vessels, to migrate, a process necessary for the formation of new blood vessels.

The new work sheds light on ways in which calcium and mitochondrial dysfunction contribute to cell and vascular damage, leading to new opportunities for the discovery of therapies capable of preventing cell injury. According to Madesh, "If we can slow down calcium uptake and protect mitochondria, we may be able to keep mitochondrial energy levels up."

The findings have implications for other research being conducted at Temple's Center for Translational Medicine, where there is particular interest in oxidative damage sustained from conditions such as ischemic reperfusion (when blood flow resumes following a temporary pause, such as during a heart attack).

"Calcium overload and oxidative stress are implicated in cardiovascular and neurodegenerative diseases, aging, and metabolic syndrome," Madesh said. "Calcium overload and oxidative stress is a common feature in disease. It happens all the time."


Story Source:

The above story is based on materials provided by Temple University Health System. Note: Materials may be edited for content and length.


Journal Reference:

  1. NicholasE. Hoffman, HarishC. Chandramoorthy, Santhanam Shamugapriya, Xueqian Zhang, Sudarsan Rajan, Karthik Mallilankaraman, RajeshKumar Gandhirajan, RonaldJ. Vagnozzi, LucasM. Ferrer, Krishnalatha Sreekrishnanilayam, Kalimuthusamy Natarajaseenivasan, Sandhya Vallem, Thomas Force, EricT. Choi, JosephY. Cheung, Muniswamy Madesh. MICU1 Motifs Define Mitochondrial Calcium Uniporter Binding and Activity. Cell Reports, 2013; DOI: 10.1016/j.celrep.2013.11.026

Cite This Page:

Temple University Health System. "Scientists studying mitochondrial calcium handling yield new disease targets." ScienceDaily. ScienceDaily, 12 December 2013. <www.sciencedaily.com/releases/2013/12/131212123311.htm>.
Temple University Health System. (2013, December 12). Scientists studying mitochondrial calcium handling yield new disease targets. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2013/12/131212123311.htm
Temple University Health System. "Scientists studying mitochondrial calcium handling yield new disease targets." ScienceDaily. www.sciencedaily.com/releases/2013/12/131212123311.htm (accessed October 31, 2014).

Share This



More Plants & Animals News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How A Chorus Led Scientists To A New Frog Species

How A Chorus Led Scientists To A New Frog Species

Newsy (Oct. 30, 2014) A frog noticed by a conservationist on New York's Staten Island has been confirmed as a new species after extensive study and genetic testing. Video provided by Newsy
Powered by NewsLook.com
Surfer Accidentally Stands on Shark, Gets Bitten

Surfer Accidentally Stands on Shark, Gets Bitten

AP (Oct. 30, 2014) A 20-year-old competition surfer said on Thursday he accidentally stepped on a shark's head before it bit him off the Australian east coast. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Ebola Inflicts Heavy Toll on Guinean Potato Trade

Ebola Inflicts Heavy Toll on Guinean Potato Trade

AFP (Oct. 30, 2014) The Ebola epidemic has seen Senegal and Guinea Bissau close its borders with Guinea and the economic consequences have started to be felt, especially in Fouta Djallon, where the renowned potato industry has been hit hard. Duration: 02:01 Video provided by AFP
Powered by NewsLook.com
Genetically Altered Glowing Flower on Display in Tokyo

Genetically Altered Glowing Flower on Display in Tokyo

Reuters - Innovations Video Online (Oct. 30, 2014) Just in time for Halloween, a glowing flower goes on display in Tokyo. Instead of sorcery and magic, its creators used science to genetically modify the flower, adding a naturally fluorescent plankton protein to its genetic mix. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins