Featured Research

from universities, journals, and other organizations

Water in cells behaves in complex, intricate ways

Date:
December 17, 2013
Source:
University of Michigan
Summary:
In a sort of biological "spooky action at a distance," water in a cell slows down in the tightest confines between proteins and develops the ability to affect other proteins much farther away, researchers have discovered.

An illustration of crowded lyzozyme proteins (magenta) and droplets of water (blue.) University of Michigan chemistry professors have discovered that when proteins in a cell reach a certain concentration -- and distance from each other -- the surrounding water dramatically slows down. The findings could provide insights into why proteins clump together in diseases such as Alzheimer's.
Credit: Kevin Kubarych

In a sort of biological "spooky action at a distance," water in a cell slows down in the tightest confines between proteins and develops the ability to affect other proteins much farther away, University of Michigan researchers have discovered.

Related Articles


On a fundamental level, the findings show some of the complex and unexpected ways that water behaves inside cells. In a practical sense, they could provide insights into how and why proteins clump together in diseases such as Alzheimer's and Parkinson's. Understanding how proteins aggregate could help researchers figure out how to prevent them from doing so.

Spooky action at a distance is how Albert Einstein described quantum entanglement, a phenomenon that can join two or more particles in a way that allows physicists to control all of the entangled particles through one of them, even if the particles are far apart.

"In our case, the motion of water molecules in the tight spaces between cellular machinery acts as the medium for what you might think of as biological action at a distance, " said Kevin Kubarych, associate professor of chemistry in the U-M College of Literature, Science, and the Arts.

Kubarych and his colleagues found that when they concentrated proteins in a solution until the distance between them was just 30-40 angstroms, the water in that space dramatically slowed by a factor of 10, compared with pure water alone. The researchers were surprised to observe that increasing the crowding beyond that point did not slow the water any further. An angstrom is one-tenth of a nanometer, or one hundred-thousandth of a millimeter.

"Biochemists usually study how these proteins function by observing them at low concentrations -- in uncrowded conditions. That's like saying you want to know how a taxi driver drives and you take the taxi and study it Dexter, Mich. But does that taxi driver function the same in Dexter as he does in Manhattan? No, of course not. What we found was rather than being a gradual transition, you're either in Dexter or Manhattan. There's nowhere in between," Kubarych said.

The research team conducted computer simulations in parallel with experiments. In their experiments, they applied ultrafast spectroscopic techniques and site-specific vibrational labeling to observe the motion of water near protein surfaces on a picosecond timescale. One picosecond is one millionth of a millionth of a second. At the distance they describe, when their solution contained 30 percent proteins and 70 percent water, the motional tumbling of the water slowed from a 3 picosecond pace to 12 picoseconds. Motional tumbling refers to the time it takes for a water molecule to switch the water molecule partners it's bound to in the elaborate square dance that happens as the liquid moves.

They observed this effect not just in the space where the proteins were tightly packed, but also at much greater separations, estimated to be up to 4 nanometers away. This distance corresponds to roughly 14 water layers and is comparable to the size of an entire protein molecule.

Slower water means slower encounters between proteins and other molecules. Proteins are hydrophobic, meaning they essentially repel water at their surfaces and seek out other molecules to bind with, shielding them both from water. In many cases, they bind with other proteins, but they could also bind with pharmaceutical drugs. Understanding how slower water can affect binding sites could be valuable information for medicine as well.

Biological cells are about 60 percent water and 40 percent macromolecules such as proteins, carbohydrates and other components. This intricate machinery carries out self-organized yet precisely choreographed routines to transform energy, manufacture goods and respond to outside influences.

"While it is tempting to focus on the macromolecules, it is becoming increasingly clear that the water is not simply an innocent bystander, but instead plays an active and sometimes decisive role in mediating the processes carried out by the cell's machinery," Kubarych said.


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kevin Kubarych and Charles Brooks III. Crowding Induced Collective Hydration of Biological Macromolecules over Extended Distances. Journal of the American Chemistry Society, December 2013

Cite This Page:

University of Michigan. "Water in cells behaves in complex, intricate ways." ScienceDaily. ScienceDaily, 17 December 2013. <www.sciencedaily.com/releases/2013/12/131217155331.htm>.
University of Michigan. (2013, December 17). Water in cells behaves in complex, intricate ways. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2013/12/131217155331.htm
University of Michigan. "Water in cells behaves in complex, intricate ways." ScienceDaily. www.sciencedaily.com/releases/2013/12/131217155331.htm (accessed October 25, 2014).

Share This



More Plants & Animals News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins