Featured Research

from universities, journals, and other organizations

Moa or less: Extinct 'robust' birds of New Zealand might not have been so robust after all

Date:
December 18, 2013
Source:
Manchester University
Summary:
Giant moa bird (Dinornis robustus, literally meaning ‘robust strange bird’) may not have actually had robust bones, according to new research. The leg bones of one of the tallest birds that ever existed were actually rather like those of its modern (but distant) relatives, such as ostrich, emu and rhea, the study shows.

Moa birds.
Credit: Image courtesy of Manchester University

Giant moa bird (Dinornis robustus, literally meaning 'robust strange bird') may not have actually had robust bones, according to new research conducted by The University of Manchester. The leg bones of one of the tallest birds that ever existed were actually rather like those of its modern (but distant) relatives, such as ostrich, emu and rhea, the study published in PLOS One today (18 December) shows.

Related Articles


The study, led by biomechanics researcher Charlotte Brassey, in collaboration with palaeobiologist Professor Richard Holdaway at the University of Canterbury in New Zealand, has found that the largest of the moa species had leg bones similar to those of modern flightless birds that can run fast, whereas a much smaller species of moa -- from a different family -- had an extremely robust skeleton.

Ms Brassey said:"Our research suggests that this group of birds came up with several different solutions to deal with the problem of supporting the large body necessary to process a diet of coarse vegetation.

"We know that these species of moa were living together in the same locations, at the same time. So we don't think the differences we're seeing in leg robustness are adaptations to a particular habitat type.

"Instead it seems they were perhaps engaging in different behaviours, although both could deal with extremely rough terrain."

The project was funded by the Natural Environment Research Council. It involved academics from the School of Earth Atmospheric and Environmental Sciences and Faculty Life Sciences at Manchester, together with Biological Sciences at Canterbury.

To find out whether the leg bones were overly thick and strong, the researchers first had to work out how heavy the birds were in life. Scientists have done this in the past by working from how thick or round the leg bones themselves are, then scaling up according to the size of bones of living birds The problem comes when the leg bones have unusual proportions.

Ms Brassey, from the Computational and Evolutionary Biology Research Group, Faculty of Life Sciences, said: "If we'd wanted to estimate the weight of a saber-toothed cat, no-one would have suggested measuring canine tooth length and then scaling up the tooth size of your standard tabby.

"That's because we know that the saber-toothed cat had unusually oversized canines compared to house cats. It wouldn't be a fair comparison, and you'd end up with a ludicrously high estimate of the body weight of the saber-toothed cat. "The same was true for moa. We already knew that moa had disproportionately wide leg bones, yet previous estimates of their body mass had been based on those same bones which probably resulted in overestimates."

To get around this, the authors scanned whole skeletons, and, as predicted, the new estimates were considerably lower. Nonetheless, the largest moa still weighed in at a hefty 200kg, or 30 family-sized Christmas turkeys: if you wanted roast moa on Christmas day, you would have to start cooking on December 23.

Dr William Sellers, co-author on the study, said:: "If you don't get the body mass right, the rest of your analysis will just spit out the wrong numbers. By using the whole skeleton rather than just a single bone we get much better mass estimates, and we can even calculate how good this estimate actually is."

The researchers then applied an engineering technique know as Finite Element Analysis (FEA) to estimate how robust the moa really were. FEA is a way of 'virtually crash-testing' an object using computer simulations, and is commonly used in civil engineering to estimate the strength of bridges, or model the behaviour of Formula One cars. The FEA technique and new estimates for body mass revealed that different groups of moa had solved the engineering problems of supporting their huge bodies in different ways. Such fundamental differences in structure suggest that the nine species of moa had long histories of independent evolution.


Story Source:

The above story is based on materials provided by Manchester University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Charlotte A. Brassey, Richard N. Holdaway, Abigail G. Packham, Jennifer Annι, Philip L. Manning, William I. Sellers. More than One Way of Being a Moa: Differences in Leg Bone Robustness Map Divergent Evolutionary Trajectories in Dinornithidae and Emeidae (Dinornithiformes). PLoS ONE, 2013; 8 (12): e82668 DOI: 10.1371/journal.pone.0082668

Cite This Page:

Manchester University. "Moa or less: Extinct 'robust' birds of New Zealand might not have been so robust after all." ScienceDaily. ScienceDaily, 18 December 2013. <www.sciencedaily.com/releases/2013/12/131218170853.htm>.
Manchester University. (2013, December 18). Moa or less: Extinct 'robust' birds of New Zealand might not have been so robust after all. ScienceDaily. Retrieved December 17, 2014 from www.sciencedaily.com/releases/2013/12/131218170853.htm
Manchester University. "Moa or less: Extinct 'robust' birds of New Zealand might not have been so robust after all." ScienceDaily. www.sciencedaily.com/releases/2013/12/131218170853.htm (accessed December 17, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Wednesday, December 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) — Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) — Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com
Rover Finds More Clues About Possible Life On Mars

Rover Finds More Clues About Possible Life On Mars

Newsy (Dec. 17, 2014) — NASA's Curiosity rover detected methane on Mars and organic compounds on the surface, but it doesn't quite prove there was life ... yet. Video provided by Newsy
Powered by NewsLook.com
Ivory Trade Boom Swamps Law Efforts

Ivory Trade Boom Swamps Law Efforts

Reuters - Business Video Online (Dec. 17, 2014) — Demand for ivory has claimed the lives of tens of thousands of African elephants and now a conservation report says the illegal trade is overwhelming efforts to enforce the law. Amy Pollock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins