Featured Research

from universities, journals, and other organizations

Big data project reveals where carbon-stocking projects in Africa provide greatest benefits

Date:
December 19, 2013
Source:
Aarhus University
Summary:
One way to reduce concentrations of greenhouse gases in the atmosphere is to ensure that carbon is stored on the ground to the greatest extent possible. But how do you quantify the potential of landscapes to stock carbon? Researchers now present the first continental-scale assessment of which areas may provide the greatest direct and indirect benefits from carbon storage reforestation projects in Africa.

This is a photo from a carbon forestation project in Patako, Senegal. The project is being coordinated through the EU-funded Undesert Project. It involves planting indigenous trees in a degraded area and getting carbon credits from these.
Credit: Fatimata Niang-Diop

It is increasingly recognized that climate change has the potential to threaten people and nature, and that it is imperative to tackle the drivers of climate change, namely greenhouse gases. One way to slow climate change is to increase the number of trees on Earth, as they, through photosynthesis, take up the greenhouse gas carbon dioxide, converting it to carbon products which are stored in the vegetation (in the form of wood, roots, leaves) and oxygen.

New forests continue to accumulate carbon for hundreds of years. Therefore, forestation projects are one way of generating 'carbon credits', which are tradable units on the carbon market. The more carbon is stored in the vegetation, the more profitable such projects are.

Restoring forests should bring especially high carbon returns in areas where plants grow fast and to big sizes, but where past disturbances such as deforestation, fires, and degradation have resulted in much of the vegetation being destroyed, because the difference between what is there and what could potentially be there is so large. However, little information exists on where such areas are, and how big their carbon storage potential is.

Researchers from Aarhus University, Denmark, the University of Pretoria, South Africa, and the Council for Scientific and Industrial Research in South Africa have now developed a method to calculate the difference between the potential carbon that could be stored in vegetation if there were no disturbances and the carbon that is currently stored in vegetation in tropical Africa.

The researchers based their analysis on a satellite-derived map of current carbon being stored in vegetation. Combining it with data on environmental factors that affect plant growth, such as climate and soil, they could model the maximum amount of carbon that could be stored in vegetation across tropical Africa. By subtracting the actual amount of carbon currently stored in vegetation from this, they could thus show where in Africa carbon-stocking projects would be particularly profitable.

People and biodiversity factors are also important

In reality, such a map of where most carbon could be stored is probably of limited use for deciding where to plan carbon projects, because there may be a number of constraints to setting up forestation projects to stock carbon. For example, a densely populated agricultural area with high levels of rainfall and temperatures might bring high carbon returns; however, it would be unlikely to be profitable as land value in these areas is high, and because it would be problematic to have to relocate people. Therefore, such constraints must be considered when planning carbon forests.

In addition, it might be a good idea to consider whether there are wider benefits to setting up such projects.

"We used our map which showed where carbon forests would bring high returns, to ask where carbon-stocking by forestation would not only be highly profitable, but where it would also minimize conflict with people, and benefit biodiversity and people," says Michelle Greve from the University of Pretoria, who led the project as part of her PhD at Aarhus University.

"Therefore, we applied a method to optimally select areas which would not only have high carbon returns, but would also conserve native biodiversity and support ecosystem services, that is, services that the environment provides which benefit humans. The areas also had to have low land value and human population density, so as to reduce conflict with people, and high levels of governance, because setting up projects in areas with high levels of violence and corruption would be too risky and have too low chances of success," Michelle Greve explains.

Michelle Greve and her colleagues could thus identify areas where carbon projects would have wider co-benefits. An example of an area that showed high carbon returns, but was less important when these other factors were considered, was the region around Lake Victoria in East Africa. The area currently has little vegetation biomass due to heavy degradation, but has an excellent climate for tree growth, and thus has a high potential for carbon stocking through forests. However, it does not support as high biodiversity as some other areas and, more importantly, it is also densely populated by people who practice intensive agriculture in the area. So setting aside land here to plant carbon forests would not be optimal.

Rather, regions of the Upper Guinean rainforests of West Africa, and the Lower Guinean rainforests which are situated on the coast of Nigeria and Cameroon, were identified as having more optimal combinations of high carbon stocking potential, high co-benefits for wildlife conservation and humans and high feasibility.

"There is a great need to reduce the amount of greenhouse gasses in the atmosphere. Our approach exemplifies how strategies to do this can be targeted to optimize feasibility and co-benefits for biodiversity and people," concludes Jens-Christian Svenning, professor at Aarhus University and supervisor on the PhD project.


Story Source:

The above story is based on materials provided by Aarhus University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Michelle Greve et al. Spatial optimization of carbon-stocking projects across Africa integrating stocking potential with co-benefits and feasibility. Nature Communications, December 2013

Cite This Page:

Aarhus University. "Big data project reveals where carbon-stocking projects in Africa provide greatest benefits." ScienceDaily. ScienceDaily, 19 December 2013. <www.sciencedaily.com/releases/2013/12/131219093556.htm>.
Aarhus University. (2013, December 19). Big data project reveals where carbon-stocking projects in Africa provide greatest benefits. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2013/12/131219093556.htm
Aarhus University. "Big data project reveals where carbon-stocking projects in Africa provide greatest benefits." ScienceDaily. www.sciencedaily.com/releases/2013/12/131219093556.htm (accessed April 17, 2014).

Share This



More Earth & Climate News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Change of Diet Helps Crocodile Business

Change of Diet Helps Crocodile Business

Reuters - Business Video Online (Apr. 16, 2014) Crocodile farming has been a challenge in Zimbabwe in recent years do the economic collapse and the financial crisis. But as Ciara Sutton reports one of Europe's biggest suppliers of skins to the luxury market has come up with an unusual survival strategy - vegetarian food. Video provided by Reuters
Powered by NewsLook.com
How Mt. Everest Helped Scientists Research Diabetes

How Mt. Everest Helped Scientists Research Diabetes

Newsy (Apr. 15, 2014) British researchers were able to use Mount Everest's low altitudes to study insulin resistance. They hope to find ways to treat diabetes. Video provided by Newsy
Powered by NewsLook.com
The Walking, Talking Oil-Drigging Rig

The Walking, Talking Oil-Drigging Rig

Reuters - Business Video Online (Apr. 15, 2014) Pennsylvania-based Schramm is incorporating modern technology in its next generation oil-drigging rigs, making them smaller, safer and smarter. Ernest Scheyder reports. Video provided by Reuters
Powered by NewsLook.com
In Washington, a Push to Sterilize Stray Cats

In Washington, a Push to Sterilize Stray Cats

AFP (Apr. 14, 2014) To curb the growing numbers of feral cats in the US capital, the Washington Humane Society is encouraging residents to set traps and bring the animals to a sterilization clinic, after which they are released.. Duration: 02:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins