Featured Research

from universities, journals, and other organizations

Nitrous oxide emissions in streams and rivers examined

Date:
January 14, 2014
Source:
Boise State University
Summary:
The scientists are trying to understand how populations of microorganisms regulate emissions of nitrous oxide from streams and rivers.

(Clockwise from front) Student researchers Annika Quick, Tiffany Farrell and Christina Beeson take scientific measurements in a humanmade stream bed at the Idaho Water Center in downtown Boise.
Credit: Image courtesy of Boise State University

A relatively unknown, hidden, artificial stream, called a "flume," located in the basement of the Idaho Water Center at Broadway and Front streets in downtown Boise is the site of a collaborative research initiative by scientists from Boise State University and the University of Idaho (UI).

Related Articles


The scientists are trying to understand how populations of microorganisms regulate emissions of nitrous oxide from streams and rivers. Nitrous oxide is a potent greenhouse gas and contributor to climate change. The source of the gas is nitrate, a compound made up of nitrogen and oxygen, which is commonly used in fertilizers and finds its way into waterways from agricultural runoff.

The laboratory flume hosts its own little world -- an isolated ecosystem modeled to mirror the natural conditions of the hyporheic zone, the space where surface and ground waters of rivers and streams meet. The flume was initially populated with microorganisms and nitrogen from sediment and vegetation obtained from an area near Lucky Peak State Park.

Microbes, bacteria in particular, often get a bad rap, but their biochemical activity is critical for sustaining life on Earth. Even the biosphere's atmospheric conditions are affected by microbial activity. One of these processes, denitrification, is what Boise State and UI scientists are really interested in measuring in the flume.

Normally, denitrification results in harmless nitrogen gas. In some cases, however, one of the intermediate compounds, nitrous oxide, is emitted instead of nitrogen gas before the denitrification process completes.

"Rates of nitrous oxide production in natural systems may be influenced by the distribution of microorganisms and whether they have the ability to reduce nitrous oxide to nitrogen gas," said

Kevin Feris, a microbial ecologist and associate professor in the Department of Biological Sciences at Boise State.

Nitrous oxide, informally known as laughing gas, may conjure up memories of the humorous dental scene with Inspector Clouseau in the "Pink Panther Strikes Back," but in reality it has serious impacts on Earth's atmosphere.

"Nitrous oxide is approximately 300 times stronger as a greenhouse gas than carbon dioxide," said Feris. Nitrous oxide released from the hyporheic zone could be responsible for up to 10 percent of global human-caused nitrous oxide emissions, he added.

Feris hopes that a better understanding of the role of microbes in nitrous oxide production will inspire strategies to reduce greenhouse gas emissions from natural and human-made water systems.

"If you were to restore an affected waterway, or design an irrigation system for a large agricultural environment, having some idea of what the physical and chemical parameters are that influence the distribution of microorganisms that make nitrous oxide might make the emissions more manageable," said Feris, adding "You are not managing the emissions directly, but structuring the ecosystem so that it doesn't happen, or at least not as much."

The project is funded by the National Science Foundation (NSF).


Story Source:

The above story is based on materials provided by Boise State University. The original article was written by Leah Sherwood. Note: Materials may be edited for content and length.


Cite This Page:

Boise State University. "Nitrous oxide emissions in streams and rivers examined." ScienceDaily. ScienceDaily, 14 January 2014. <www.sciencedaily.com/releases/2014/01/140114130705.htm>.
Boise State University. (2014, January 14). Nitrous oxide emissions in streams and rivers examined. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2014/01/140114130705.htm
Boise State University. "Nitrous oxide emissions in streams and rivers examined." ScienceDaily. www.sciencedaily.com/releases/2014/01/140114130705.htm (accessed October 24, 2014).

Share This



More Earth & Climate News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins