Featured Research

from universities, journals, and other organizations

Immune system drives pregnancy complications after fetal surgery in mice

Date:
January 27, 2014
Source:
University of California - San Francisco
Summary:
Researchers have shown that, in mice at least, pregnancy complications after fetal surgery are triggered by activation of the mother's T cells.

As a fetal surgeon at UC San Francisco, Tippi MacKenzie, MD, has long known that conducting surgery on a fetus to correct a problems such as spina bifida often results in preterm labor and premature birth.

Related Articles


Now, MacKenzie and her UCSF colleagues have shown that, in mice at least, pregnancy complications after fetal surgery are triggered by activation of the mother's T cells -- the same T cells that cause the body to reject a donor organ after transplant surgery.

"Here at UCSF, the birthplace of fetal surgery, preterm labor has been described as the 'Achilles' heel' of the field because it diminishes the benefit of the surgery itself," said MacKenzie, an associate professor of surgery and director of research at the UCSF Fetal Treatment Center. "However, specific treatments have not been developed because until now, the biological triggers responsible for preterm birth have been unknown."

If the same fetal rejection mechanism is occurring in humans, she said, "we have the ability to design specific medical treatments to prevent it -- for example, by using medications that target some of the pathways involved in T cell-mediated rejection."

The study was published online on January 15, 2014, in the Journal of Immunology and will be printed in the February 15 issue.

Normally, pregnancy is a robust form of immune tolerance, in which the pregnant mother naturally tolerates a genetically foreign fetus, MacKenzie explained. "This is in contrast to an organ transplant, where you need to administer immunosuppressive drugs to prevent the body from rejecting a foreign graft. Our study supports the idea that fetal intervention breaks this tolerance by activating the mother's immune system, suggesting that the biology behind preterm labor is similar to transplant rejection."

In their study, MacKenzie and her team used a mouse model of fetal intervention to show that, after fetal surgery, maternal T cells gather in the uterus. "These are effector T cells, which are the main cells responsible for rejecting a transplanted organ," said MacKenzie. "In a shift from the normal balance in the uterus, they outnumber regulatory T cells, which are usually responsible for suppressing an immune response against the fetus."

The scientists next worked with genetically modified mice that had T cells designed to recognize and reject one specific foreign protein. They transferred those T cells into the circulation of pregnant mice whose fetuses expressed that protein because they had inherited the gene from their father. The scientists found that, in mice that had fetal surgery, the transferred T cells multiplied and migrated to the uterus.

"It's known that in a normal pregnancy T cells that recognize the fetus can circulate in the mother and live in harmony with the fetus," said first author Marta Wegorzewska, DEGREE? a graduate student in the MacKenzie lab. "But when you perform fetal surgery, they get activated and go to the uterus."

Although the activated T cells were an important clue, the researchers' next step was to prove that they had a harmful effect on pregnancy. They designed an experiment in which half of the pups carried by a pregnant mouse were genetically identical to their mother -- as is common among experimental mice -- and half were genetically different and expressed foreign proteins inherited from the father. They then injected more of the foreign protein into each fetus in the litter. After this fetal intervention, the scientists observed that there were significantly more deaths among the genetically different pups than among the genetically identical pups.

They then repeated the experiment on a group of mice without T cells and found no difference in the rate of death between the two types of pups.

"This experiment demonstrates that activation of the mother's T cells after fetal surgery can mediate the death of genetically foreign fetuses," concluded MacKenzie.

She cautioned that there is a significant difference between her experimental mouse model and human pregnancy: If a mouse pregnancy has complications after fetal surgery, the outcome is not preterm labor but the death of the fetus. "That said, this mouse model is a wonderful tool to study the immune mechanisms of pregnancy complications after surgery," MacKenzie said.

The next step for her team, she said, "is to determine to what extent fetal interventions trigger the mother's immune response in humans, or if there is some other cause. Those studies are currently under way."


Story Source:

The above story is based on materials provided by University of California - San Francisco. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Wegorzewska, A. Nijagal, C. M. Wong, T. Le, N. Lescano, Q. Tang, T. C. MacKenzie. Fetal Intervention Increases Maternal T Cell Awareness of the Foreign Conceptus and Can Lead to Immune-Mediated Fetal Demise. The Journal of Immunology, 2014; DOI: 10.4049/jimmunol.1302403

Cite This Page:

University of California - San Francisco. "Immune system drives pregnancy complications after fetal surgery in mice." ScienceDaily. ScienceDaily, 27 January 2014. <www.sciencedaily.com/releases/2014/01/140127093216.htm>.
University of California - San Francisco. (2014, January 27). Immune system drives pregnancy complications after fetal surgery in mice. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2014/01/140127093216.htm
University of California - San Francisco. "Immune system drives pregnancy complications after fetal surgery in mice." ScienceDaily. www.sciencedaily.com/releases/2014/01/140127093216.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How To: Mixed Green Salad Topped With Camembert Cheese

How To: Mixed Green Salad Topped With Camembert Cheese

Rumble (Jan. 26, 2015) Learn how to make a mixed green salad topped with a pan-seared camembert cheese in only a minute! Music: Courtesy of Audio Network. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Husky Puppy Plays With Ferret

Husky Puppy Plays With Ferret

Rumble (Jan. 26, 2015) It looks like this 2-month-old Husky puppy and the family ferret are going to be the best of friends. Look at how much fun they&apos;re having together! Credit to &apos;Vira&apos;. Video provided by Rumble
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins