Science News
from research organizations

A simple new way to induce pluripotency: Acid

Date:
January 29, 2014
Source:
Nature Publishing Group
Summary:
An unusual reprogramming phenomenon by which the fate of somatic cells can be drastically altered through changes to the external environment is described in two new articles.
Share:
       
FULL STORY

STAP cells generated entire fetus body.
Credit: Copyright Haruko Obokata

An unusual reprogramming phenomenon by which the fate of somatic cells can be drastically altered through changes to the external environment is described in two papers in this week's Nature.*

Postnatal somatic cells committed to a specific lineage are shown to be converted into a pluripotent state (capable of differentiating into nearly all cell types) when exposed to an environmental stress, in this case short exposure to low pH. This reprogramming process does not need nuclear manipulation or the introduction of transcription factors -- thought to be necessary to induce pluripotency -- so the work may have important implications for regenerative medicine.

Reprogramming in response to environmental stress has been observed in plants, whereby mature cells can become immature cells capable of forming a whole new plant structure, including roots and stalks. Whether animal cells have a similar potential has been a challenging question, but one that Haruko Obokata and co-authors have addressed. They demonstrate that mammalian somatic cells can be reprogrammed when stressed by low-pH conditions, and call the phenomenon stimulus-triggered acquisition of pluripotency (STAP).

So-called STAP cells have some characteristics that resemble embryonic stem cells, but the STAP cells only have a limited capacity for self-renewal. In a second paper, Obokata and colleagues investigate the nature of STAP cells and suggest that they represent a unique state of pluripotency. The researchers also demonstrate that under pluripotent stem-cell culture conditions STAP cells can be transformed into robustly self-renewing stem cells, similar to embryonic stem cells.

Together, these findings reveal that cells in the body have the potential to become pluripotent and provide new insights into the diverse cellular states.

*Editor's Note: Both articles were retracted by Nature on July 2, 2014.

See: http://www.nature.com/nature/journal/v511/n7507/full/nature13599.html

See: http://www.nature.com/nature/journal/v511/n7507/full/nature13598.html


Story Source:

The above post is reprinted from materials provided by Nature Publishing Group. Note: Materials may be edited for content and length.


Journal References:

  1. Haruko Obokata, Teruhiko Wakayama, Yoshiki Sasai, Koji Kojima, Martin P. Vacanti, Hitoshi Niwa, Masayuki Yamato, Charles A. Vacanti. Stimulus-triggered fate conversion of somatic cells into pluripotency. Nature, 2014; 505 (7485): 641 DOI: 10.1038/nature12968
  2. Haruko Obokata, Yoshiki Sasai, Hitoshi Niwa, Mitsutaka Kadota, Munazah Andrabi, Nozomu Takata, Mikiko Tokoro, Yukari Terashita, Shigenobu Yonemura, Charles A. Vacanti, Teruhiko Wakayama. Bidirectional developmental potential in reprogrammed cells with acquired pluripotency. Nature, 2014; 505 (7485): 676 DOI: 10.1038/nature12969

Cite This Page:

Nature Publishing Group. "A simple new way to induce pluripotency: Acid." ScienceDaily. ScienceDaily, 29 January 2014. <www.sciencedaily.com/releases/2014/01/140129184445.htm>.
Nature Publishing Group. (2014, January 29). A simple new way to induce pluripotency: Acid. ScienceDaily. Retrieved July 7, 2015 from www.sciencedaily.com/releases/2014/01/140129184445.htm
Nature Publishing Group. "A simple new way to induce pluripotency: Acid." ScienceDaily. www.sciencedaily.com/releases/2014/01/140129184445.htm (accessed July 7, 2015).

Share This Page: