Featured Research

from universities, journals, and other organizations

Grasshoppers are what they eat: New method to extract plant DNA from grasshopper guts sheds light on plant-insect interactions

Date:
February 5, 2014
Source:
American Journal of Botany
Summary:
Grasshoppers cause damage that costs landowners millions of dollars annually; however, grasshopper populations also play a positive role in cycling nutrients from decomposing plant matter back into the soil. A new method to recover high-quality DNA of ingested plant tissue from grasshopper guts can allow scientists to investigate their feeding patterns, and could help illuminate the impact of grasshoppers on plant communities.

Grasshoppers may be small, but the damages they are causing to the U.S. agriculture industry are anything but. Every year, they feed on crops and on rangelands needed for raising livestock, costing landowners millions of dollars. Although they pose a major threat, grasshopper populations play a positive role in cycling nutrients from decomposing plant matter back into the soil. A new method to investigate their feeding patterns could be the key to a better understanding of the impact of grasshoppers on plant communities.

Related Articles


"The main problem with current control methods is the damage done to non-target plant and insect species," says University of Cincinnati researcher Alina Avanesyan, who developed the new protocol while studying grasshopper leaf tissue consumption. "Accurately determining the feeding preferences of grasshoppers can help us to understand the magnitude of plant damage, and consequently, whether or not control of grasshoppers is needed in a given area."

The method recovers high-quality DNA of ingested plant tissue from grasshopper guts. This plant DNA offers valuable information about grasshopper diets because it holds more data than what can be observed by the naked eye. Scientists can use it to compare specific feeding patterns between different grasshopper species and uncover behaviors that might lead to intensive crop damage in certain areas. A detailed description of the dissection and DNA extraction, including a video illustrating the dissection technique, can be viewed in the February issue of Applications in Plant Sciences.

According to Avanesyan, "With this protocol, a researcher can focus on a variety of research questions, such as detecting plant-insect interactions, determining how long the food has been digested, estimating the prevalence of different plants in insect guts, exploring the sequence of multiple plant species consumed, and inferring feeding preferences."

The protocol begins with a basic dissection kit used to isolate the grasshopper guts. A DNA extraction is then performed on the gut components, which results in a combination of grasshopper and plant DNA. Isolating the plant DNA involves a simple polymerase chain reaction, or PCR, which is used to amplify desired regions of genetic material for further research.

A major advantage of this method is that it can be completed in less than three hours and utilizes inexpensive laboratory equipment accessible to researchers with less funding. It also includes a new technique to divide the gut into sections, enabling researchers to track the step-by-step movement of plant matter through each gut compartment.

"We can follow plant food movement during its consumption, record the sequence of food digested (what plant was chosen to consume first) or the time needed for food digestion in each compartment, and ultimately better understand the insect food digestion process," Avanesyan explains. "It opens doors to a completely different research area -- insect physiology."

To demonstrate the utility of the protocol, Avanesyan successfully amplified the DNA of a noncoding region of a plant chloroplast gene and performed multiple feeding trials. Results indicated that plant tissue could be detected up to 12 hours after ingestion in nymph M. differentialis and M. bivittatus grasshoppers and adult M. femurrubrum grasshoppers. For adult M. differentialis grasshoppers, which were the largest in size, plant tissue was detected up to 22 hours post-ingestion. This information lets researchers know how to time the dissection with feeding experiments.

Findings from the gut separation technique uncovered interesting details about M. differentialis grasshoppers. They often did not switch between grasses during feeding, but instead consumed different plant species sequentially.

The proposed protocol is an effective, relatively quick, and low-cost method of detecting plant DNA from a grasshopper gut and its different sections. Benefits extend far beyond grasshoppers, as it can be adapted to any insect herbivores of interest. New information obtained from ingested plant DNA could ultimately lead to more targeted and sustainable methods of managing insect populations, making the new gut DNA extraction method a valuable tool for the scientific community.

"It would be great to know whether there is a difference in digestibility between native and exotic plants, which are morphologically and physiologically similar," says Avanesyan, who plans to continue to use the protocol to investigate plant defenses against insect herbivores.


Story Source:

The above story is based on materials provided by American Journal of Botany. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alina Avanesyan. Plant DNA Detection from Grasshopper Guts: A Step-by-Step Protocol, from Tissue Preparation to Obtaining Plant DNA Sequences. Applications in Plant Sciences, 2014; 2 (2): 1300082 DOI: 10.3732/apps.1300082

Cite This Page:

American Journal of Botany. "Grasshoppers are what they eat: New method to extract plant DNA from grasshopper guts sheds light on plant-insect interactions." ScienceDaily. ScienceDaily, 5 February 2014. <www.sciencedaily.com/releases/2014/02/140205143758.htm>.
American Journal of Botany. (2014, February 5). Grasshoppers are what they eat: New method to extract plant DNA from grasshopper guts sheds light on plant-insect interactions. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2014/02/140205143758.htm
American Journal of Botany. "Grasshoppers are what they eat: New method to extract plant DNA from grasshopper guts sheds light on plant-insect interactions." ScienceDaily. www.sciencedaily.com/releases/2014/02/140205143758.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com
Rover Finds More Clues About Possible Life On Mars

Rover Finds More Clues About Possible Life On Mars

Newsy (Dec. 17, 2014) NASA's Curiosity rover detected methane on Mars and organic compounds on the surface, but it doesn't quite prove there was life ... yet. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins