Featured Research

from universities, journals, and other organizations

Bacterial superbug protein structure solved

Date:
February 17, 2014
Source:
Biophysical Society
Summary:
Scientists have deciphered the 3-D structure of a protein that confers antibiotic resistance from one of the most worrisome disease agents: a strain of bacteria called methicillin-resistant Staphylococcus aureus (MRSA), which can cause skin and other infections. The team's findings may be an important step in combating the MRSA public health threat over the next 5 to 10 years.

This is an overall ribbon diagram of FosB from Staphylococcus aureus. The unique "door" (highlighted in orange) is shown in the open position.
Credit: M.Thompson/Vanderbilt

A research team from Vanderbilt University Medical Center in Nashville, Tenn., is the first to decipher the 3-D structure of a protein that confers antibiotic resistance from one of the most worrisome disease agents: a strain of bacteria called methicillin-resistant Staphylococcus aureus (MRSA), which can cause skin and other infections. The Vanderbilt team's findings may be an important step in combatting the MRSA public health threat over the next 5 to 10 years.

Related Articles


By deciphering the shape of a key S. aureus protein -- an enzyme called FosB that inactivates an antibiotic called fosfomycin -- the researchers have set the stage to devising a therapeutic method to inhibit FosB and hence improve the efficacy of the antibiotic. The team will present its work at the 58th Annual Meeting of the Biophysical Society, held Feb. 15-19, 2014, in San Francisco, Calif.

"Our hope is that now that we know the 3-D shape and overall function of the FosB protein, we will be able to design inhibitors of FosB that will enable fosfomycin to function appropriately as an antibiotic," said Matthew K. Thompson, a postdoctoral researcher on the team. "When we can successfully do that, we may very well be able to combat S. aureus infections with fosfomycin."

Identifying the FosB protein's three-dimensional structure helps scientists understand that protein's particular function. In particular, the new structural images of FosB, obtained by a technique called X-ray crystallography, provide insight into the functional role of a particular part of the protein's shape called a binding loop. It appears to function like a door that opens and closes to allow the antibiotic to enter the active site of FosB.

In addition to providing new insight on the function of this S. aureus protein, the research has also produced new evidence for the role zinc might play in inhibiting FosB. This could impact restoring the efficacy of fosfomycin, leading to treatment for a variety of multi-drug-resistant pathogens.

According to the U.S. Centers for Disease Control (CDC) and Prevention, MRSA poses a serious risk to public health. Studies show that about one in three people carry S. aureus in their nose, usually without any illness, and two in 100 people carry the methicillin-resistant version of the bacteria, though there is no data to show the total number of people who get MRSA skin infections.


Story Source:

The above story is based on materials provided by Biophysical Society. Note: Materials may be edited for content and length.


Cite This Page:

Biophysical Society. "Bacterial superbug protein structure solved." ScienceDaily. ScienceDaily, 17 February 2014. <www.sciencedaily.com/releases/2014/02/140217084810.htm>.
Biophysical Society. (2014, February 17). Bacterial superbug protein structure solved. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2014/02/140217084810.htm
Biophysical Society. "Bacterial superbug protein structure solved." ScienceDaily. www.sciencedaily.com/releases/2014/02/140217084810.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Feast Your Eyes: Lamb Chop Sent Into Space from UK

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Reuters - Light News Video Online (Nov. 25, 2014) Take a stab at this -- stunt video shows a lamb chop's journey from an east London restaurant over 30 kilometers into space. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins