Featured Research

from universities, journals, and other organizations

Mechanism of dengue virus entry into cells uncovered by research

Date:
February 17, 2014
Source:
Biophysical Society
Summary:
Despite its heavy toll, the prevention and clinical treatment of dengue infection has been a "dramatic failure in public health compared to other infectious diseases like HIV," said an author of a new article. Now, new research could offer vital insight into the mechanism of dengue virus entry into cells -- and aid vaccine and clinical drug development.

Dengue fever, an infectious tropical disease caused by a mosquito-borne virus, afflicts millions of people each year, causing fever, headache, muscle and joint pains and a characteristic skin rash. In some people the disease progresses to a severe, often fatal, form known as dengue hemorrhagic fever. Despite its heavy toll, the prevention and clinical treatment of dengue infection has been a "dramatic failure in public health compared to other infectious diseases like HIV," said Ping Liu of the University of North Carolina at Chapel Hill.

Related Articles


Now, new research by Liu and her colleagues, to be presented at the 58th Annual Biophysical Society Meeting, which takes place in San Francisco from Feb. 15-19, could offer vital insight into the mechanism of dengue virus entry into cells -- and aid vaccine and clinical drug development.

Specifically, Liu, a postdoctoral scholar in the laboratories of cell biologist Ken Jacobson and biophysical chemist Nancy Thompson, along with dengue fever expert Aravinda de Silva, used high-resolution microscopes to examine the expression of a particular protein, known as DC-SIGN (for dendritic cell-specific intercellular adhesion molecule-grabbing nonintegrin), on the surface of immune system cells called dendritic cells.

The normal role of DC-SIGN is to capture pathogens so that fragments of those pathogens can be presented as antigens on the surface of the dendritic cells. Such antigens then are recognized by T cells -- the workhorse cells of the immune system -- "which is one of the first steps in the normal immune response," Liu said.

While it has been known for some time that dengue used DC-SIGN to attach to cells, Liu and her colleagues used high-resolution microscopy to study exactly how the viruses used the protein to gain entry into cells. "DC-SIGN has a unique carbohydrate recognition domain on its extracellular portion, which binds to all sorts of carbohydrates on pathogens," she explained. (Other pathogens, including HIV and the bacterium that causes tuberculosis, are likely to use the same back door).

"An effective medication or vaccine should stop the process of dengue virus entry into cells," Liu said. To that end, she said, de Silva and his colleagues have identified strong neutralization antibodies that block dengue infection. "We are looking into the details of how those neutralization antibodies act and the role of DC-SIGN in the neutralization process." By identifying the mechanism of antibody neutralization, Liu and colleagues hope to advance the development of vaccines for Dengue virus infections.


Story Source:

The above story is based on materials provided by Biophysical Society. Note: Materials may be edited for content and length.


Cite This Page:

Biophysical Society. "Mechanism of dengue virus entry into cells uncovered by research." ScienceDaily. ScienceDaily, 17 February 2014. <www.sciencedaily.com/releases/2014/02/140217160941.htm>.
Biophysical Society. (2014, February 17). Mechanism of dengue virus entry into cells uncovered by research. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2014/02/140217160941.htm
Biophysical Society. "Mechanism of dengue virus entry into cells uncovered by research." ScienceDaily. www.sciencedaily.com/releases/2014/02/140217160941.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins