Featured Research

from universities, journals, and other organizations

Bioengineered growth factors lead to better wound healing

Date:
February 20, 2014
Source:
Ecole Polytechnique Fédérale de Lausanne
Summary:
When we are wounded, our bodies naturally begin a process of repair of the damaged tissue. This process is mediated by biological molecules called growth factors, which are proteins that occur naturally in our cells and guide processes ranging from embryonic development to healing. Given their regenerative role in the body, growth factors have been investigated for use in drugs but with limited success. Scientists have now greatly improved the effectiveness of clinical growth factors in the context of soft tissue and bone repair, paving new strategies for regenerative medicine.

When we are wounded, our bodies naturally begin a process of repair of the damaged tissue. This process is mediated by biological molecules called growth factors, which are proteins that occur naturally in our cells and guide processes ranging from embryonic development to healing. Given their regenerative role in the body, growth factors have been investigated for use in drugs but with limited success. Publishing in Science, an EPFL group has used bioengineering to significantly improve the efficacy of clinical growth factors in the context of soft tissue and bone repair, while maintaining low and safe doses.

Growth factors are employed in a wide range of clinical applications that require cell growth. A major one is regenerative medicine, which addresses tissue repair and wound healing. A number of growth factors have been explored in pharmaceutical compounds to promote new blood vessel and bone formation, and even to trigger the generation of granulation tissue -- a collagen-rich tissue that forms at the site of an injury. Despite their extensive therapeutic exploration, growth factors have been very limited in terms of clinical translation, mostly because drug formulations often fail to properly reflect the biological function of growth factors in wound healing.

A group led by Jeffrey A. Hubbell at EPFL has found a way to vastly improve the efficiency of growth factors, while keeping their usage at low doses. The group screened 25 growth factors against six key proteins of the extracellular matrix -- the supporting structure that surrounds organs and tissues in the body and is heavily associated with mediating the function of growth factors. Physiologically, the growth factors interact with these proteins to stimulate cell growth in damaged tissues by activation of receptors. In the screening test, the 25 growth factors bound to the six proteins with varying strengths, allowing the researchers to select one growth factor (PIGF-2) that showed the strongest binding across all six proteins.

By analyzing the sequence of the growth factor, the scientists isolated a 22-amino acid section that is responsible for the powerful binding of PIGF-2 to extracellular matrix proteins. By fusing that sequence to three growth factors they were able to increase their binding affinity by 2- to 100-fold, which could reduce the need for higher doses in the future. In addition, the bioengineered growth factors showed that they could mimic interactions in the formation of a blood clot, which would be additional beneficial to wound-healing.

The group also tested low-dose topical application of growth factors on diabetic mice, which are a common model for impaired wound healing. Compared to their unmodified counterparts, the growth factors containing the PIGF-2 sequence resulted in much faster wound closing and production of granulation tissue, and also led to a more pronounced new blood vessel formation, which is essential in sustaining the latter. The researchers also saw similar effects in bone repair, with the engineered growth factors showing a much higher deposition of bone tissue in rats with skull defects. Finally, they were able to show that the clinical side-effects of one particular growth factor could be alleviated by replacing it with its bioengineered counterpart.

The results show that a relatively simple modification can greatly improve the clinical use of growth factors, by making them more efficient, cost-effective and safe. The group is now fusing the PIGF-2 sequence to additional growth factors, which they can do in a virtually plug-and-play fashion. "Evolution has provided a close interaction between the extracellular matrix and growth factors," says Hubbell. "By re-engineering the molecules, we are able to exploit that interaction and open the way for clinical translation, turning these molecules into useful drugs." The researchers are now planning to extend their studies to larger animal models and eventually begin preliminary human trials.


Story Source:

The above story is based on materials provided by Ecole Polytechnique Fédérale de Lausanne. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. M. Martino, P. S. Briquez, E. Guc, F. Tortelli, W. W. Kilarski, S. Metzger, J. J. Rice, G. A. Kuhn, R. Muller, M. A. Swartz, J. A. Hubbell. Growth Factors Engineered for Super-Affinity to the Extracellular Matrix Enhance Tissue Healing. Science, 2014; 343 (6173): 885 DOI: 10.1126/science.1247663

Cite This Page:

Ecole Polytechnique Fédérale de Lausanne. "Bioengineered growth factors lead to better wound healing." ScienceDaily. ScienceDaily, 20 February 2014. <www.sciencedaily.com/releases/2014/02/140220141723.htm>.
Ecole Polytechnique Fédérale de Lausanne. (2014, February 20). Bioengineered growth factors lead to better wound healing. ScienceDaily. Retrieved September 3, 2014 from www.sciencedaily.com/releases/2014/02/140220141723.htm
Ecole Polytechnique Fédérale de Lausanne. "Bioengineered growth factors lead to better wound healing." ScienceDaily. www.sciencedaily.com/releases/2014/02/140220141723.htm (accessed September 3, 2014).

Share This



More Health & Medicine News

Wednesday, September 3, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Snack Attack: Study Says Action Movies Make You Snack More

Snack Attack: Study Says Action Movies Make You Snack More

Newsy (Sep. 2, 2014) — You're more likely to gain weight while watching action flicks than you are watching other types of programming, says a new study published in JAMA. Video provided by Newsy
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) — The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Doctors Fear They're Losing Battle Against Ebola

Doctors Fear They're Losing Battle Against Ebola

AP (Sep. 2, 2014) — As a third American missionary is confirmed to have contracted Ebola in Liberia, doctors on the ground in West Africa fear they're losing the battle against the outbreak. (Sept. 2) Video provided by AP
Powered by NewsLook.com
Tech Giants Bet on 3D Headsets for Gaming, Healthcare

Tech Giants Bet on 3D Headsets for Gaming, Healthcare

AFP (Sep. 2, 2014) — When Facebook acquired the virtual reality hardware developer Oculus VR in March for $2 billion, CEO Mark Zuckerberg hailed the firm's technology as "a new communication platform." Duration: 02:24 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins