Featured Research

from universities, journals, and other organizations

Pine forest particles appear seemingly out of thin air, influence climate

Date:
February 26, 2014
Source:
University of Washington
Summary:
Pine forests are especially magical places for atmospheric chemists. Coniferous trees give off pine-scented vapors that form particles, very quickly and seemingly out of nowhere. New research elucidates the process by which gas wafting from coniferous trees creates particles that can reflect sunlight or promote formation of clouds.

This is Finland's Hyytiälä Forest, where researchers collected field measurements, in early spring.
Credit: Claudia Mohr, UW

Pine forests are especially magical places for atmospheric chemists. Coniferous trees give off pine-scented vapors that form particles, very quickly and seemingly out of nowhere.

New research by German, Finnish and U.S. scientists elucidates the process by which gas wafting from coniferous trees creates particles that can reflect sunlight or promote cloud formation, both important climate feedbacks. The study is published Feb. 27 in Nature.

"In many forested regions, you can go and observe particles apparently form from thin air. They're not emitted from anything, they just appear," said Joel Thornton, a University of Washington associate professor of atmospheric sciences and second author on the paper.

The study shows the chemistry behind these particles' formation, and estimates they may be the dominant source of aerosols over boreal forests. The Intergovernmental Panel on Climate Change has named aerosols generally one of the biggest unknowns for climate change.

Scientists have known for decades that gases from pine trees can form particles that grow from just 1 nanometer in size to 100 nanometers in about a day. These airborne solid or liquid particles can reflect sunlight, and at 100 nanometers they are large enough to condense water vapor and prompt cloud formation.

In the new paper, researchers took measurements in Finnish pine forests and then simulated the same particle formation in an air chamber at Germany's Jülich Research Centre. A new type of chemical mass spectrometry let researchers pick out 1 in a trillion molecules and follow their evolution.

Results showed that when a pine-scented molecule combines with ozone in the surrounding air, some of the resulting free radicals grab oxygen with unprecedented speed.

"The radical is so desperate to become a regular molecule again that it reacts with itself. The new oxygen breaks off a hydrogen from a neighboring carbon to keep for itself, and then more oxygen comes in to where the hydrogen was broken off," Thornton said.

Current chemistry would predict that 3 to 5 oxygen molecules could be added per day during oxidation, Thornton said. But researchers observed the free radical adding 10 to 12 oxygen molecules in a single step. This new, bigger molecule wants to be in a solid or liquid state, rather than gas, and condenses onto small particles of just 3 nanometers. Researchers found so many of these molecules are produced that they can clump together and grow to a size big enough to influence climate.

"I think unravelling that chemistry is going to have some profound impacts on how we describe atmospheric chemistry generally," Thornton said.

Lead author Mikael Ehn did the work as a postdoctoral researcher in Germany, working in the group of co-author Thomas Mentel. Ehn is now based at the University of Helsinki in Finland.

Boreal or pine forests give off the largest amount of these compounds, so the finding is especially relevant for the northern parts of North America, Europe and Russia. Other types of forests emit similar vapors, Thornton said, and he believes the rapid oxidation may apply to a broad range of atmospheric compounds.

"I think a lot of missing puzzle pieces in atmospheric chemistry will start to fall into place once we incorporate this understanding," Thornton said.

Forests are thought to emit exponentially more of these scented compounds as temperatures rise. Understanding how those vapors react could help to predict how forested regions will respond to global warming, and what role they will play in the planet's response.

In related work, Thornton's group was part of a campaign last summer to study air chemistry over the Southeastern United States, where aerosols formed by reforested areas or from pollution could help explain why that region has not warmed as much as other places.

"It's thought that as the Earth warms there will be more of these vapors emitted, and some fraction of them will be converted to particles which can potentially shade the Earth's surface," Thornton said. "How effective that is at temperature regulation is still very much an open question."

The 33 co-authors also include Felipe Lopez-Hilfiker and Ben Lee, both at the UW, and researchers from the University of Copenhagen in Denmark, the Institute for Tropospheric Research in Germany, Aerodyne Research Inc. in Massachusetts, and Tampere University of Technology in Finland.

The research was funded by the European Research Council, Academy of Finland Center of Excellence, U.S. Department of Energy, and the Emil Aaltonen Foundation.


Story Source:

The above story is based on materials provided by University of Washington. The original article was written by Hannah Hickey. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mikael Ehn, Joel A. Thornton, Einhard Kleist, Mikko Sipilä, Heikki Junninen, Iida Pullinen, Monika Springer, Florian Rubach, Ralf Tillmann, Ben Lee, Felipe Lopez-Hilfiker, Stefanie Andres, Ismail-Hakki Acir, Matti Rissanen, Tuija Jokinen, Siegfried Schobesberger, Juha Kangasluoma, Jenni Kontkanen, Tuomo Nieminen, Theo Kurtén, Lasse B. Nielsen, Solvejg Jørgensen, Henrik G. Kjaergaard, Manjula Canagaratna, Miikka Dal Maso, Torsten Berndt, Tuukka Petäjä, Andreas Wahner, Veli-Matti Kerminen, Markku Kulmala, Douglas R. Worsnop, Jürgen Wildt, Thomas F. Mentel. A large source of low-volatility secondary organic aerosol. Nature, 2014; 506 (7489): 476 DOI: 10.1038/nature13032

Cite This Page:

University of Washington. "Pine forest particles appear seemingly out of thin air, influence climate." ScienceDaily. ScienceDaily, 26 February 2014. <www.sciencedaily.com/releases/2014/02/140226132954.htm>.
University of Washington. (2014, February 26). Pine forest particles appear seemingly out of thin air, influence climate. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2014/02/140226132954.htm
University of Washington. "Pine forest particles appear seemingly out of thin air, influence climate." ScienceDaily. www.sciencedaily.com/releases/2014/02/140226132954.htm (accessed August 30, 2014).

Share This




More Earth & Climate News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Volcano Erupts on Papua New Guinea

Raw: Volcano Erupts on Papua New Guinea

AP (Aug. 29, 2014) — Several communities were evacuated and some international flights were diverted on Friday after one of the most active volcanos in the region erupts. (Aug. 29) Video provided by AP
Powered by NewsLook.com
Raw: Small Volcanic Eruption in Iceland

Raw: Small Volcanic Eruption in Iceland

AP (Aug. 29, 2014) — Icelandic authorities briefly raised the aviation warning code to red on Friday during a small eruption at the Holuhraun lava field in the Bardabunga volcano system. (Aug. 29) Video provided by AP
Powered by NewsLook.com
As Drought Continues LA "water Police" Fight Waste

As Drought Continues LA "water Police" Fight Waste

AFP (Aug. 29, 2014) — In the midst of a historic drought, Los Angeles is increasing efforts to go after people who waste water. Five water conservation "cops" drive around the city every day educating homeowners about the drought. Duration: 02:17 Video provided by AFP
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) — State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

More Coverage


Major Enigma Solved in Atmospheric Chemistry

Feb. 26, 2014 — Aerosols in the atmosphere influence cloud formation, the Earth's radiation balance, and thus the climate. Scientists have now found out how these aerosols are formed from the volatile organic ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins