Featured Research

from universities, journals, and other organizations

Huntington proteins and their nasty 'social network'

Date:
February 27, 2014
Source:
Buck Institute for Age Research
Summary:
Researchers have identified and categorized thousands of protein interactions involving huntingtin, the protein responsible for Huntington's disease. To use an analogy of a human social network, the identified proteins are like 'friends' and 'friends of friends' of the Huntington's disease protein. The network provides an invaluable resource for identifying targets to treat the disease and has been used to implicate a particular signaling pathway involved in cell motility.

Researchers at the Buck Institute have identified and categorized thousands of protein interactions involving huntingtin, the protein responsible for Huntington's disease (HD). To use an analogy of a human social network, the identified proteins are like "friends" and "friends of friends" of the HD protein. The network provides an invaluable resource for identifying targets to treat the disease and has been used to implicate a particular signaling pathway involved in cell motility. HD is an incurable, fatal, inherited neurological disorder that causes severe degeneration of the nervous system.

The research appears in the March 7, 2014 edition of the Journal of Biological Chemistry and was chosen as the Paper of the Week. The Journal's editorial board members consider this study to be in the top 2% of those to be published this year in terms of significance and overall importance.

HD is caused by a mutation in the human HTT gene that results in an abnormal expansion and misfolding of the corresponding huntingtin protein. Buck researchers established an unprecedented large-scale interaction network for the huntingtin protein identifying 2,141 highly interconnected proteins that have over 3,200 interactions among them.

The work involved a close collaboration between Buck faculty members Robert E. Hughes, PhD, an expert in neurodegeneration, and Sean D. Mooney, PhD, who leads the Institute's bioinformatics program. Researchers analyzed protein interaction data generated at Prolexys Pharmaceuticals that identified more than 100 huntingtin interacting proteins (HIPs) and more than 2,000 proteins that interact with HIPs. "The damage caused by the mutant huntingtin protein radiates out through the cell, like a pebble dropped in a pond. In this case, the pond is filled with proteins that make up much of the cell," said Hughes. "We now have a handle on the detailed structure of a complex web of interactions that causes global dysfunction in cells resulting in degeneration of the brain."

Hughes said Mooney employed sophisticated computational methods which allowed researchers to comprehensively analyze the functions or so-called "jobs" of the proteins and networks and how they might be impacted by the huntingtin mutation. The investigators identified several pathways that were particularly conspicuous in the network. In particular, HD mutations impacting the RhoGTPase signaling pathway interfered with filopodia, the slender projections that cells use to direct movement and communicate with other cells. The data indicate that the HD mutation directly affects membrane dynamics, cell attachment and cell motility. Defects in these pathways can provide critical clues for how to best intervene in the disease with drugs.

Highlighting the collaboration, Hughes said, "This study demonstrates how the synergy between experimental and computational approaches can help unravel the nature of a complex disease such as HD." Mooney added, "Understanding and characterizing potentially functional HD protein interactions gives scientists new tools to connect genomic, genetic, proteomic and other molecular changes to identify the causes of this deadly disease. Bioinformaticians can add this dataset to their systems biology toolbox in the quest for interventions that can suppress the progression of HD."


Story Source:

The above story is based on materials provided by Buck Institute for Age Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. C. Tourette, B. Li, R. Bell, S. O'Hare, L. S. Kaltenbach, S. D. Mooney, R. E. Hughes. A Large-scale Huntingtin Protein Interaction Network Implicates Rho GTPase Signaling Pathways in Huntington's Disease. Journal of Biological Chemistry, 2014; DOI: 10.1074/jbc.M113.523696

Cite This Page:

Buck Institute for Age Research. "Huntington proteins and their nasty 'social network'." ScienceDaily. ScienceDaily, 27 February 2014. <www.sciencedaily.com/releases/2014/02/140227101148.htm>.
Buck Institute for Age Research. (2014, February 27). Huntington proteins and their nasty 'social network'. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2014/02/140227101148.htm
Buck Institute for Age Research. "Huntington proteins and their nasty 'social network'." ScienceDaily. www.sciencedaily.com/releases/2014/02/140227101148.htm (accessed September 1, 2014).

Share This




More Mind & Brain News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com
Electrical Stimulation Boosts Brain Function, Study Says

Electrical Stimulation Boosts Brain Function, Study Says

Newsy (Aug. 29, 2014) Researchers found an improvement in memory and learning function in subjects who received electric pulses to their brains. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins