Featured Research

from universities, journals, and other organizations

Purification, culture and multi-lineage differentiation of zebrafish neural crest cells

Date:
February 27, 2014
Source:
Society for Experimental Biology and Medicine
Summary:
The neural crest (NC) is a unique cell population associated with vertebrate evolution. For the first time, these multipotent cells were isolated from zebrafish embryos and maintained and differentiated in culture. The NC progenitors were differentiated into multiple neural crest lineages, contributing to neurons, glial cells, smooth muscle cells, melanocytes, and chondrocytes. Functional cell behavior assays indicated that retinoic acid had profound effect on NC cell morphology and differentiation, significantly inhibited proliferation and enhanced cell migration.

Researchers at the Massachusetts General Hospital (MGH)/Harvard Medical School, Drs. Beste Kinikoglu and Yawei Kong, led by Dr. Eric C. Liao, cultured and characterized for the first time multipotent neural crest cells isolated from zebrafish embryos. This important study is reported in the February 2014 issue of Experimental Biology and Medicine. Neural crest is a unique cell population induced at the lateral border of the neural plate during embryogenesis and vertebrate development depends on these multipotent migratory cells. Defects in neural crest development result in a wide range of malformations, such as cleft lip and palate, and diseases, such as melanoma.

Dr. Liao's laboratory uses zebrafish as a model vertebrate to study the genetic basis of neural crest related craniofacial malformations. Zebrafish has long been used to study early development and recently emerged as a model to study disease. "Development of in vitro culture of neural crest cells and reproducible functional assays will provide a valuable and complementary approach to the in vivo experiments in zebrafish" said Dr. Eric C. Liao, senior author of the study and an Assistant Professor of Surgery at MGH, and Principal Faculty at the Harvard Stem Cell Institute.

The team took advantage of the sox 10 reporter transgenic model to enrich and isolate the neural crest cells (NCCs), which were subsequently cultured under optimized culture conditions. Cultured NCCs were found to express major neural crest lineage markers such as sox10, sox9a, hnk1, p75, dlx2a, and pax3, and the pluripotency markers c-myc and klf4. The cells could be further differentiated into multiple neural crest lineages, contributing to neurons, glial cells, smooth muscle cells, melanocytes, and chondrocytes. Using the functional cell behavior assays that they developed, the team was able to assess the influence of retinoic acid, an endogenously synthesized, powerful, morphogenetic molecule, on NCC behavior. This study showed that retinoic acid had a profound effect on NCC morphology and differentiation, significantly inhibited proliferation and enhanced cell migration. The data implicate NCCs as a target cell population for retinoic acid and suggest that it plays multiple critical roles in NCC development.

"We hope that our novel neural crest system will be useful to gain mechanistic understanding of NCC development and for cell-based high-throughput drug screening applications" said Dr. Beste Kinikoglu, a postdoctoral fellow in Dr. Liao's laboratory and the study's first author. Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine said "Liao and colleagues have provided the first zebrafish embryo derived NCC pure population in vitro model for the study of neural crest development. I believe that this will be a valuable tool for this purpose."


Story Source:

The above story is based on materials provided by Society for Experimental Biology and Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. Kinikoglu, Y. Kong, E. C. Liao. Featured Article: Characterization of cultured multipotent zebrafish neural crest cells. Experimental Biology and Medicine, 2013; 239 (2): 159 DOI: 10.1177/1535370213513997

Cite This Page:

Society for Experimental Biology and Medicine. "Purification, culture and multi-lineage differentiation of zebrafish neural crest cells." ScienceDaily. ScienceDaily, 27 February 2014. <www.sciencedaily.com/releases/2014/02/140227164610.htm>.
Society for Experimental Biology and Medicine. (2014, February 27). Purification, culture and multi-lineage differentiation of zebrafish neural crest cells. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2014/02/140227164610.htm
Society for Experimental Biology and Medicine. "Purification, culture and multi-lineage differentiation of zebrafish neural crest cells." ScienceDaily. www.sciencedaily.com/releases/2014/02/140227164610.htm (accessed July 25, 2014).

Share This




More Plants & Animals News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Dogs Appear To Become Jealous Of Owners' Attention

Dogs Appear To Become Jealous Of Owners' Attention

Newsy (July 23, 2014) A U.C. San Diego researcher says jealousy isn't just a human trait, and dogs aren't the best at sharing the attention of humans with other dogs. Video provided by Newsy
Powered by NewsLook.com
Professor Creates Site Revealing Where People's Cats Live

Professor Creates Site Revealing Where People's Cats Live

Newsy (July 23, 2014) ​It's called I Know Where Your Cat Lives, and you can keep hitting the "Random Cat" button to find more real cats all over the world. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins