Featured Research

from universities, journals, and other organizations

It slices, it dices, and it protects the body from harm: 3-D structure of enzyme that helps defend against bacteria

Date:
February 28, 2014
Source:
Princeton University
Summary:
An essential weapon in the body's fight against infection has come into sharper view. Researchers have discovered the 3-D structure of an enzyme that cuts to ribbons the genetic material of viruses and helps defend against bacteria. The discovery of the structure of this enzyme, a first-responder in the body's "innate immune system," could enable new strategies for fighting infectious agents and possibly prostate cancer and obesity. "This work illustrates the wonderful usefulness of doing both crystallography and careful kinetic and enzymatic studies at the same time," said one scientist.

Researchers at Princeton have deciphered the 3-D structure of RNase L, an enzyme that slices through RNA and is a first responder in the innate immune system. The structure contains two subunits, represented in red as two parts of a pair of scissors.
Credit: Illustration by Sneha Rath. Inset courtesy of Science.

An essential weapon in the body's fight against infection has come into sharper view. Researchers at Princeton University have discovered the 3D structure of an enzyme that cuts to ribbons the genetic material of viruses and helps defend against bacteria.

The discovery of the structure of this enzyme, a first-responder in the body's "innate immune system," could enable new strategies for fighting infectious agents and possibly prostate cancer and obesity. The work was published Feb. 27 in the journal Science.

Until now, the research community has lacked a structural model of the human form of this enzyme, known as RNase L, said Alexei Korennykh, an assistant professor of molecular biology and leader of the team that made the discovery.

"Now that we have the human RNase L structure, we can begin to understand the effects of carcinogenic mutations in the RNase L gene. For example, families with hereditary prostate cancers often carry genetic mutations in the region, or locus, encoding RNase L," Korennykh said. The connection is so strong that the RNase L locus also goes by the name "hereditary prostate cancer 1." The newly found structure reveals the positions of these mutations and explains why some of these mutations could be detrimental, perhaps leading to cancer, Korennykh said. RNase L is also essential for insulin function and has been implicated in obesity.

The Princeton team's work has also led to new insights on the enzyme's function.

The enzyme is an important player in the innate immune system, a rapid and broad response to invaders that includes the production of a molecule called interferon. Interferon relays distress signals from infected cells to neighboring healthy cells, thereby activating RNase L to turn on its ability to slice through RNA, a type of genetic material that is similar to DNA. The result is new cells armed for destruction of the foreign RNA.

The 3D structure uncovered by Korennykh and his team consists of two nearly identical subunits called protomers. The researchers found that one protomer finds and attaches to the RNA, while the other protomer snips it.

The initial protomer latches onto one of the four "letters" that make up the RNA code, in particular, the "U," which stands for a component of RNA called uridine. The other protomer "counts" RNA letters starting from the U, skips exactly one letter, then cuts the RNA.

Although the enzyme can slice any RNA, even that of the body's own cells, it only does so when activated by interferon.

"We were surprised to find that the two protomers were identical but have different roles, one binding and one slicing," Korennykh said. "Enzymes usually have distinct sites that bind the substrate and catalyze reactions. In the case of RNase L, it appears that the same exact protein surface can do both binding and catalysis. One RNase L subunit randomly adopts a binding role, whereas the other identical subunit has no other choice but to do catalysis."

To discover the enzyme's structure, the researchers first created a crystal of the RNase L enzyme. The main challenge was finding the right combination of chemical treatments that would force the enzyme to crystallize without destroying it.

After much trial and error and with the help of an automated system, postdoctoral research associate Jesse Donovan and graduate student Yuchen Han succeeded in making the crystals.

Next, the crystals were bombarded with powerful X-rays, which diffract when they hit the atoms in the crystal and form patterns indicative of the crystal's structure. The diffraction patterns revealed how the atoms of RNase L are arranged in 3D space.

At the same time Sneha Rath, a graduate student in Korennykh's laboratory, worked on understanding the RNA cleavage mechanism of RNase L using synthetic RNA fragments. Rath's results matched the structural findings of Han and Donovan, and the two pieces of data ultimately revealed how RNase L cleaves its RNA targets.

Han, Donovan and Rath contributed equally to the paper and are listed as co-first authors.

Finally, senior research specialist Gena Whitney and graduate student Alisha Chitrakar conducted additional studies of RNase L in human cells, confirming the 3D structure.

Now that the human structure has been solved, researchers can explore ways to either enhance or dampen RNase L activity for medical and therapeutic uses, Korennykh said.

"This work illustrates the wonderful usefulness of doing both crystallography and careful kinetic and enzymatic studies at the same time," said Peter Walter, professor of biochemistry and biophysics at the University of California-San Francisco School of Medicine. "Crystallography gives a static picture which becomes vastly enhanced by studies of the kinetics."


Story Source:

The above story is based on materials provided by Princeton University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Y. Han, J. Donovan, S. Rath, G. Whitney, A. Chitrakar, A. Korennykh. Structure of Human RNase L Reveals the Basis for Regulated RNA Decay in the IFN Response. Science, 2014; DOI: 10.1126/science.1249845

Cite This Page:

Princeton University. "It slices, it dices, and it protects the body from harm: 3-D structure of enzyme that helps defend against bacteria." ScienceDaily. ScienceDaily, 28 February 2014. <www.sciencedaily.com/releases/2014/02/140228210604.htm>.
Princeton University. (2014, February 28). It slices, it dices, and it protects the body from harm: 3-D structure of enzyme that helps defend against bacteria. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2014/02/140228210604.htm
Princeton University. "It slices, it dices, and it protects the body from harm: 3-D structure of enzyme that helps defend against bacteria." ScienceDaily. www.sciencedaily.com/releases/2014/02/140228210604.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins