Featured Research

from universities, journals, and other organizations

Stumbling fruit flies lead scientists to discover gene essential for sensing joint position

Date:
March 13, 2014
Source:
Scripps Research Institute
Summary:
Scientists have discovered a mechanism underlying sensory feedback that guides balance and limb movements. If the findings can be fully replicated in humans, they could lead to a better understanding of and treatments for disorders arising from faulty proprioception, the detection of body position.

The new study identified a new gene and a type of nerve cell required for detection of leg position. This image shows a stum-expressing sensory neuron in a leg joint.
Credit: Image from the Cook lab, The Scripps Research Institute.

Scientists at The Scripps Research Institute (TSRI) have discovered an important mechanism underlying sensory feedback that guides balance and limb movements.

Related Articles


The finding, which the TSRI team uncovered in fruit flies, centers on a gene and a type of nerve cell required for detection of leg-joint angles. "These cells resemble human nerve cells that innervate joints," said team leader Professor Boaz Cook, who is an assistant professor at TSRI, "and they encode joint-angle information in the same way."

If the findings can be fully replicated in humans, they could lead to a better understanding of, as well as treatments for, disorders arising from faulty proprioception, the detection of body position.

A report of the findings appears in the March 14, 2014 issue of the journal Science.

A Mystery of Sensation

The proprioceptive sense of how the limbs are positioned is what enables a person, even with eyes closed, to touch the tip of the nose with the tip of a finger -- an ability easily impaired by alcohol, which is why traffic police often test suspected drunk drivers this way.

Scientists have known that proprioceptive signals originate from so-called mechanosensory neurons, whose nerve ends are embedded in muscles, skin and other tissues. The stretching or compression of these tissues opens ion channels in the nerve membrane, which results in a signal to the brain.

What hasn't been clear is how such a neuron can specialize in sensing just one type of membrane-distorting stimulus -- such as the angle of a limb joint -- yet exclude others, such as impact pressures.

In the new study, Cook and two members of his laboratory, first author Bela S. Desai, a postdoctoral fellow, and graduate student Abhishek Chadha, sought to shed some light on this mystery with a study of Drosophila fruit flies. Quickly maturing and easily studied, Drosophila often are analyzed for clues to the genetic underpinnings of basic animal behaviors.

Following the Trail

Cook and his colleagues began with a special collection of Drosophila containing a variety of uncatalogued mutations. The scientists sifted through the collection looking for mutant flies with walking impairments and soon zeroed in on several impaired walkers that turned out to have mutations in the same gene.

The scientists named the gene stumble (stum for short) for the abnormality caused by its absence.

Using a fluorescent tracer, they then localized the expression of stum in normal flies to neurons that lay close to the three main leg joints. Each neuron's input-sensing tendril (dendrite) grew right up to the joints -- a sign that its evolved function is to detect joint angle.

The researchers also found that the protein specified by the stum gene normally migrates to the tip of each dendrite. With high-resolution microscopy, they imaged each of these tips and observed an extra length branching more or less sideways at the joint.

At ordinary, at-rest joint angles, the relative positions of the main dendrite tip and its side branch stayed more or less the same; however, at extreme joint angles, the pair stretched out. As they did, the level of calcium ions in the neuron rose sharply, suggesting that ion channels had opened and the neuron was becoming active.

Cook noted the results show how a seemingly general mechanosensory, membrane-stretch-sensitive neuron can evolve a specificity for a particular type of proprioceptive signal. "It's a nice example of how you can create that specificity from something that only stretches mechanically," he said.

The team is now trying to nail down the specific role of stum proteins in Drosophila and to determine whether the human version of stum -- which has never been characterized -- also works in joint angle sensing. Some sensory role for the human version of stum is likely, as the stum gene has been remarkably well conserved throughout animal evolution. Cook and his colleagues were even able to restore some normal walking ability to stum-mutant flies by adding the mouse version of the stum gene. "Stum is probably doing the same thing in all animals," he said.

The title of the Science study is "The stum Gene Is Essential for Mechanical Sensing in Proprioceptive Neurons."


Story Source:

The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. S. Desai, A. Chadha, B. Cook. The stum Gene Is Essential for Mechanical Sensing in Proprioceptive Neurons. Science, 2014; 343 (6176): 1256 DOI: 10.1126/science.1247761

Cite This Page:

Scripps Research Institute. "Stumbling fruit flies lead scientists to discover gene essential for sensing joint position." ScienceDaily. ScienceDaily, 13 March 2014. <www.sciencedaily.com/releases/2014/03/140313142445.htm>.
Scripps Research Institute. (2014, March 13). Stumbling fruit flies lead scientists to discover gene essential for sensing joint position. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2014/03/140313142445.htm
Scripps Research Institute. "Stumbling fruit flies lead scientists to discover gene essential for sensing joint position." ScienceDaily. www.sciencedaily.com/releases/2014/03/140313142445.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins