Featured Research

from universities, journals, and other organizations

Tiny crystals to boost solar

Date:
April 2, 2014
Source:
International Union of Crystallography
Summary:
A new approach to studying solar panel absorber materials has been developed. The technique could accelerate the development of non-toxic and readily available alternatives to current absorbers in thin film based solar cells.

A new approach to studying solar panel absorber materials has been developed by researchers in France. The technique could accelerate the development of non-toxic and readily available alternatives to current absorbers in thin film based solar cells.

The development of solar panel materials that are both non-toxic and made from readily available elements rather than rare and precious metals is a priority in developing a sustainable technology. Sulfide materials containing the relatively common metals copper, tin and zinc, so called kesterites, have been proposed as solar cell absorber materials because they comply with these two demands. Experimental solar cells using Cu2ZnSnS4 (CZTS) have demonstrated energy conversion efficiencies of 8.4% and 12% for a seleno-sulfide analogue. New structural information is crucial to improving on these figures still further.

Unfortunately, kesterites are not amenable to conventional X-ray diffraction because copper and zinc ions are indistinguishable. Now, Alain Lafond and his colleagues at Nantes University and Pierre Fertey from Soleil synchrotron have demonstrated that it is possible to carry out resonant diffraction of a single crystal of the semiconductor CZTS.

The powdered precursor was prepared using a ceramic synthesis at a high temperature (1023 K) from the corresponding element Cu, Zn, Sn and S. The product is heated for a further 96 hours to anneal it before it is plunged into ice-water to lock in the chemical structure present at that elevated temperature, a process known as quenching. Tiny single crystals of sufficient quality for X-ray diffraction were picked out of the powder. The researchers used laboratory powder X-ray diffraction and energy-dispersive X-ray spectroscopy analyses to test the purity of their product. They then carried out high-performance resonant diffraction on the CRISTAL beamline at the Soleil French synchrotron, which gives them the possibility to adjust the radiation wavelength in order to enhance the contrast between copper and zinc.

The data they obtained showed the annealing process generates a disordered structure that can be distinguished from the order kesterite structure despite the otherwise similar X-ray scattering pattern that would be generated by the copper and zinc ions in the ordered form. The team points out that the fabrication process for making a thin absorber film from CZTS in a solar panel is carried out at an elevated temperature and the disordered form is likely to be the active form produced which probably precludes high photovoltaic performance.

The findings offer important clues for the development of CZTS and related materials that avoid expensive and rare materials such as indium and tellurium in solar cells.

"The next step in this research is to determine the relationship between the synthesis conditions (quenching or slow cooling) and the actual Cu/Zn distribution in the kesterite structure," Lafond told us. He revealed that a new proposal to the Soleil French Synchrotron Facility has been deposited for the next experimental period and in the meantime structural disorder in kesterite materials can be investigated by solid state NMR and Raman spectroscopy.


Story Source:

The above story is based on materials provided by International Union of Crystallography. The original article was written by David Bradley. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alain Lafond, Lιo Choubrac, Catherine Guillot-Deudon, Pierre Fertey, Michel Evain, Stιphane Jobic. X-ray resonant single-crystal diffraction technique, a powerful tool to investigate the kesterite structure of the photovoltaic Cu2ZnSnS4compound. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 2014; 70 (2): 390 DOI: 10.1107/S2052520614003138

Cite This Page:

International Union of Crystallography. "Tiny crystals to boost solar." ScienceDaily. ScienceDaily, 2 April 2014. <www.sciencedaily.com/releases/2014/04/140402100048.htm>.
International Union of Crystallography. (2014, April 2). Tiny crystals to boost solar. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2014/04/140402100048.htm
International Union of Crystallography. "Tiny crystals to boost solar." ScienceDaily. www.sciencedaily.com/releases/2014/04/140402100048.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) — Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) — Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) — A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) — A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins